Math, asked by bithi6979, 10 months ago

3√3x2 - 19x + 10√3 find the zeroes of the following quadratic polynomial and verify the relationship between the zeroes and the coefficient

Answers

Answered by Anonymous
49

\large{\underline{\bf{\purple{Given:-}}}}

  • ✦ p(x) = 3√3x² - 19x + 10√3

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • ✦ we need to find the zeroes of the given polynomial and also find the relationship between the zeroes and coefficients.

\huge{\underline{\bf{\red{Solution:-}}}}

  • p(x) = 3√3x² - 19x + 10√3

 \leadsto  \:\:3√3x² - 9x - 10x + 10√3

 \leadsto  3√3x(x-√3) - 10(x-√3)

 \leadsto  \:\:(3√3x - 10)(x - √3)

 \leadsto  \:\:x = 10/3√3 or x = √3

Now relationship between the zeroes coefficients:-

  • Let α = 10/3√3
  • and β =√3

  • a = 3√3
  • b = -19
  • c = 10√3

sum of zeroes:- - b/a

 \leadsto  \:\rm \: \frac{10}{3 \sqrt{3} }  +  \sqrt{3}  \:  \:  \:  =  \frac{ - ( - 19)}{3 \sqrt{3} }  \\  \\\leadsto  \:\rm \: \frac{10 + 9}{3 \sqrt{3} }  =  \frac{19}{3 \sqrt{3} } \\  \\ \leadsto  \:\bf \: \frac{19}{3 \sqrt{3} }    =  \frac{19}{3 \sqrt{3} }  \\\\\\

product of zeroes = c/a

 \leadsto  \rm\: \frac{10}{3 \sqrt{3} }  \times  \sqrt{ 3} \:  \:  =  \frac{10 \sqrt{3} }{3 \sqrt{3} }   \\  \\ \leadsto  \rm\: \frac{10}{3{ \cancel{ \sqrt{3} }}} \times { \cancel{ \sqrt{3} }}  =  \frac{10{ \cancel{ \sqrt{3} }}}{3{ \cancel{ \sqrt{3} }}} \\  \\  \leadsto  \bf\: \frac{10}{3}  =  \frac{10}{3}\\\\\\

LHS = RHS

hence relationship is verified.

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
17

\bold\red{\underline{\underline{Answer:}}}

\bold{\frac{10}{3\sqrt3} \ and \sqrt3 \ are \ the \ zeroes.}

\bold\blue{Explanation}

\bold{The \ given \ quadratic \ polynomial \ is}

\bold{=>3\sqrt3x^{2}-19x+10\sqrt3}

\bold{Here, \ a=3\sqrt3, \ b=-19, \ c=10\sqrt3}

\bold{a×c=3\sqrt3×10\sqrt3}

\bold{a×c=90}

\bold{we, \ should \ split \ middle \ term \ such \ that}

\bold{their \ multiplication \ is \ 90 \ and }

\bold{addition \ is \ -19.}

\bold\orange{Given:}

\bold{The \ given \ polynomial \ is}

\bold{=>3\sqrt3x^{2}-19x+10\sqrt3}

\bold\pink{To \ find:}

\bold{Zeroes \ of \ the \ polynomial.}

\bold\green{\underline{\underline{Solution}}}

\bold{The \ given \ quadratic \ polynomial \ is}

\bold{=>3\sqrt3x^{2}-19x+10\sqrt3}

\bold{=>3\sqrt3x^{2}-9x-10x+10\sqrt3}

\bold{=>3\sqrt3x(x-\sqrt3)-10(x-\sqrt3)}

\bold{=>(3\sqrt3x-10)(x-\sqrt3)}

\bold{\therefore{x=\frac{10}{3\sqrt3} \ or \ \sqrt3}}

\bold\purple{\frac{10}{3\sqrt3} \ and \sqrt3 \ are \ the \ zeroes.}

\bold\blue{Verification:}

\bold{Let \ zeroes \ be \ \alpha \ and \ \beta}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

\bold{Product \ of \ zeroes=\frac{c}{a}}

__________________________________

\bold{\alpha+\beta=\frac{10}{3\sqrt3}+\sqrt3}

\bold{\therefore{\alpha+\beta=\frac{10+9}{3\sqrt3}}}

\bold{\alpha+\beta=\frac{19}{3\sqrt3}...(1)}

\bold{\frac{-b}{a}=\frac{-(-19)}{3\sqrt3}}

\bold{\therefore{\frac{-b}{a}=\frac{19}{3\sqrt3}...(2)}}

\bold{from \ (1) \ and \ (2)}

\bold{Sum \ of \ zeroes=\frac{-b}{a}}

__________________________________

\bold{\alpha×\beta=\frac{10}{3\sqrt3}×\sqrt3}

\bold{\alpha×\beta=\frac{10\sqrt3}{3\sqrt3}...(3)}

\bold{\frac{c}{a}=\frac{10\sqrt3}{3\sqrt3}...(4)}

\bold{from \ (3) \ and \ (4)}

\bold{Product \ of \ zeroes=\frac{c}{a}}

\bold{Hence \ verified}

Similar questions