Math, asked by atchunaveena007, 3 months ago

(3,4),(5,5) what is the distance and mid point

Answers

Answered by tayyabanadeem369
0

Answer:

this is not the answer only explanation

Step-by-step explanation:

Skip to main content

Main content

Distance and midpoints

Midpoint formula

CCSS.Math: HSG.GPE.B.6

Walk through writing a general formula for the midpoint between two points.

Google ClassroomFacebookTwitter

Email

The \blueD{\text{midpoint}}midpointstart color #11accd, start text, m, i, d, p, o, i, n, t, end text, end color #11accd of the points (\greenD{x_1}, \goldD{y_1})(x

1

,y

1

)left parenthesis, start color #1fab54, x, start subscript, 1, end subscript, end color #1fab54, comma, start color #e07d10, y, start subscript, 1, end subscript, end color #e07d10, right parenthesis and (\greenD{x_2}, \goldD{y_2})(x

2

,y

2

)left parenthesis, start color #1fab54, x, start subscript, 2, end subscript, end color #1fab54, comma, start color #e07d10, y, start subscript, 2, end subscript, end color #e07d10, right parenthesis is given by the following formula:

\left(\greenD{\dfrac{x_1+x_2}{2}}, \goldD{\dfrac{y_1+y_2}{2}}\right)(

2

x

1

+x

2

,

2

y

1

+y

2

)left parenthesis, start color #1fab54, start fraction, x, start subscript, 1, end subscript, plus, x, start subscript, 2, end subscript, divided by, 2, end fraction, end color #1fab54, comma, start color #e07d10, start fraction, y, start subscript, 1, end subscript, plus, y, start subscript, 2, end subscript, divided by, 2, end fraction, end color #e07d10, right parenthesis

In this article, we're going to derive this formula!

Deriving the midpoint formula

Let's start by plotting the points (\greenD{x_1}, \goldD{y_1})(x

1

,y

1

)left parenthesis, start color #1fab54, x, start subscript, 1, end subscript, end color #1fab54, comma, start color #e07d10, y, start subscript, 1, end subscript, end color #e07d10, right parenthesis and (\greenD{x_2}, \goldD{y_2})(x

2

,y

2

)left parenthesis, start color #1fab54, x, start subscript, 2, end subscript, end color #1fab54, comma, start color #e07d10, y, start subscript, 2, end subscript, end color #e07d10, right parenthesis.

The \blueD{\text{midpoint}}midpointstart color #11accd, start text, m, i, d, p, o, i, n, t, end text, end color #11accd is the point halfway between each of the points:

An expression for the xxx-coordinate of the \blueD{\text{midpoint}}midpointstart color #11accd, start text, m, i, d, p, o, i, n, t, end text, end color #11accd is \greenD{\dfrac{x_1+x_2}{2}}

2

x

1

+x

2

start color #1fab54, start fraction, x, start subscript, 1, end subscript, plus, x, start subscript, 2, end subscript, divided by, 2, end fraction, end color #1fab54: Why does this expression work?

Similarly, an expression for the yyy-coordinate of the \blueD{\text{midpoint}}midpointstart color #11accd, start text, m, i, d, p, o, i, n, t, end text, end color #11accd is \goldD{\goldD{\dfrac{y_1+y_2}{2}}}

2

y

1

+y

2

start color #e07d10, start color #e07d10, start fraction, y, start subscript, 1, end subscript, plus, y, start subscript, 2, end subscript, divided by, 2, end fraction, end color #e07d10, end color #e07d10:

That's it! We derived the following formula for the \blueD{\text{midpoint}}midpointstart color #11accd, start text, m, i, d, p, o, i, n, t, end text, end color #11accd!

\left(\greenD{\dfrac{x_1+x_2}{2}}, \goldD{\dfrac{y_1+y_2}{2}}\right)(

2

x

1

+x

2

,

2

y

1

+y

2

)left parenthesis, start color #1fab54, start fraction, x, start subscript, 1, end subscript, plus, x, start subscript, 2, end subscript, divided by, 2, end fraction, end color #1fab54, comma, start color #e07d10, start fraction, y, start subscript, 1, end subscript, plus, y, start subscript, 2, end subscript, divided by, 2, end fraction, end color #e07d10, right parenthesis

Interestingly, a lot of people don't memorize this exact formula. Instead, they remember that to find the midpoint, you take the average of the xxx-coordinates and the average of the yyy-coordinates.

Similar questions