Math, asked by Anonymous, 2 months ago

(3,4) solve it... jaldi

yaad rakhna, spamm is not allowed
vo karega, uska sara answer, questions ka report kar dunga.

I need it. so please help me ​

Attachments:

Answers

Answered by TrustedAnswerer19
7

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

Hi, friend

previously I had already solved this type of your question.

this question is also like them.

Do it yourself, please.

Again I write it.

\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\

step 2:

Here, the centre of gravity G lies on the X- axis,

So,

\bar y \:  = 0

Taking moments about the Y-axis,

  \bar x \sum \: w \:  =  \sum xw \:\:----(1)

Conisder the lamina as made up of strips of area a parallel to the Y- axis;

Let the weight par unit area of an element be = p

so, w = p×a = pa

Now from (1) ⇨

 \displaystyle \bar x \sum \: pa\:  =  \sum xpa  \\  \implies \:  \bar xp \sum \: a = p \: \sum \: xa \\  \implies \: \bar x \sum \: a \:  =  \sum xa\: \\  \implies \: \bar x \sum \: 2y \delta x\:  =  \sum x(2y \delta x) \\  \\ now \:  \sum \:  =  \:  \int \: dx \\  \\ \displaystyle \bar x ×\int_0^4\:2y\:dx\:=\:\int_0^4\:2xy \: dx \:   \:  \:  \: \:  \{upper \: and \: lower \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: limit \: are \:  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: collected \: from \: the \: graph \} \\  \implies \: \displaystyle \bar x ×\int_0^4\:2 \times 3 {x}^{ \frac{1}{2} } \:dx\:=\:\int_0^4\:2x \times  {x}^{ \frac{1}{2} }  \: dx \\  \implies \: \displaystyle \bar x ×\int_0^4\:6 {x}^{ \frac{1}{2} } \:dx\:=\:\int_0^4\:6 {x}^{ \frac{3}{2} }  \: dx \\  \implies \:  \bar x \times 32 =  \frac{384}{5}  \\  \implies \:  \bar x =  \frac{12}{5}

 So,\: G\:=\:(\:\frac{12}{5}\:,\:0\:)

Attachments:
Answered by sharma78savita
3

Answer:

A

1

= area of complete circle = πa

2

A

2

= area of small circle = π(

2

a

)

2

=

4

πa

2

(x

1

,y

1

) = coordinates of center of mass of large circle = (0, 0)

(x

2

,y

2

) = coordinates of center of mass of small circle = (

2

a

,0)

Using x

COM

=

A

1

−A

2

A

1

x

1

−A

2

x

2

we get x

COM

=

πa

2

4

π

2

4

πa

2

(

2

a

)

=

(

4

3

)

−(

8

1

)

a=−

6

a

and get x

COM

=0 as y

1

and y

1

both are zero.

Therefore, coordinates of COM of the lamina shown in figure are (−

6

a

,0).

Step-by-step explanation:

please give many thanks

Similar questions