Math, asked by adirathi322, 10 months ago

³_/4² × ³_/8² × ³_/4

Answers

Answered by nimayrastogi
0

Step-by-step explanation:

4^2/3. x. 2^2/3. x. 4^2/3. x. 4^2/3

=2^2/3. x. 4^6/3

=2^2/3x2^2x2^2

=2^16/3

pls mark as the brainliest

Answered by amankumaraman11
0

 \sqrt[3]{ {4}^{ \tiny2} }  \times  \sqrt[3]{ {8}^{\tiny2} }  \times  \sqrt[3]{4}  \\  \\   \sqrt[3]{ {4}^{ \tiny2} }  \times  \sqrt[3]{ {8}^{\tiny2} }  \times  \sqrt[3]{ {2}^{ \tiny2} } \\  \\  \sqrt[3]{ {4}^{2} \times  {8}^{2}  \times  {2}^{2}  }  \\  \\  \sqrt[3]{ {(4 \times 8 \times 2)}^{2} }  \\  \\  \sqrt[3]{ { \bigg(  {2}^{ \tiny2}  \times {2}^{ \tiny3}   \times 2\bigg)}^{2} }  \\  \\  \sqrt[3]{ { \bigg( {2}^{ \tiny{2 + 3 + 1}}  \bigg)}^{2} }  \\  \\  \sqrt[3]{ {\bigg( {2}^{ \tiny6} \bigg)}^{2} }  \\  \\  \sqrt[3]{ {2}^{ \tiny{6 \times 2}} }  =  \sqrt[3]{ {2}^{ \tiny{12}} }  =  {2}^{ \tiny{ \frac{12}{3} }}  =  {2}^{ \tiny4}  \\  \\  =  >  {2}^{4}  =  \red{16}

Similar questions