Math, asked by pgmithun1384, 9 months ago

3/(√48- √75) is equal to

Answers

Answered by Mysterioushine
8

SOLUTION :

 \frac{3}{ \sqrt{45} \:   - \:  \sqrt{75}  } \\  \\  rationalizing \: the \: denominator \\  \\ =  \frac{3}{ \sqrt{45}  \:  -  \:  \sqrt{75} }   \times  \frac{ \sqrt{45} \:    +  \:  \sqrt{75} }{ \sqrt{45}   \: +  \:  \sqrt{75} }  \\  \\  =  \frac{3( \sqrt{45} \:  +  \:  \sqrt{75} ) }{( \sqrt{45}  -  \:  \sqrt{75})( \sqrt{45}  \:  +  \sqrt{ 75})  }  \\  \\  =  \frac{3( \sqrt{45}  \:  +  \sqrt{75}) }{( \sqrt{45}) {}^{2} - ( \sqrt{75) {}^{2} }   }  \\  \\  =  \frac{3( \sqrt{45}  +  \sqrt{75})  }{ - 30}

Answered by arvindhan14
12

Answer:

-\sqrt{3}

Step-by-step explanation:

\frac{3}{\sqrt{48}\ - \sqrt{75}  }  \ = \frac{3}{\sqrt{2*2*2*2*3} \ -\sqrt{5*5*3} } \\

= \frac{3}{2*2*\sqrt{3}\ - \ 5*\sqrt{3}  } \ = \frac{3}{4\sqrt{3} \ - 5\sqrt{3} }

= \frac{3}{-\sqrt{3}} \ = \ \frac{-3}{\sqrt{3} } \ = \ -\frac{3}{\sqrt{3} } * \frac{\sqrt{3} }{\sqrt{3} }

\frac{-3*\sqrt{3} }{\sqrt{3}*\sqrt{3}  } \ = \ \frac{-3\sqrt{3} }{\sqrt{3^{2} } }

\frac{-3\sqrt{3} }{3} \ =\ -\sqrt{3}

Similar questions