3-√5×3-2√5= a√5-19/11 , find values of a
Answers
Answer:
Step-by-step explanation:
=(3-√5)/(3+2√5)
=(3-√5)/(3+2√5)×(3-2√5)/(3-2√5)
=(3-√5)(3-2√5)/(3+2√5)(3-2√5)
=[3(3-2√5)-√5(3-2√5)]/(3²-(2√5)²
=(3²-6√5-3√5+2(5))/(9-4(5))
=(9-9√5+10)/(9-20)
=(19-9√5)/(-11)
=–(19-9√5)/ 11
= –(19-9√5)/11
=(-19+9√5)/11
=(9√5-19)/11
=9√5/11 - 19/11 = a√5-19/11
Therefore,a=9/11
If it is (a√5-19)/11 then a=9
But according to question,a√5-19/11
So,answer is 9/11
Find the value of a in (3 - √5) / (3 + 2√5) = a√5 - 19/11
Solution:
Given, the expression is (3 - √5) / (3 + 2√5) = a√5 - 19/11
We have to find the value of a.
Considering LHS,
LHS: (3 - √5) / (3 + 2√5)
By taking conjugate,
(3 - √5) / (3 + 2√5) = (3 - √5) / (3 + 2√5) × (3 - 2√5) / (3 - 2√5)
= (3 - √5)(3 - 2√5) / (3 + 2√5)(3 - 2√5)
By using algebraic identity,
(a² - b²) = (a - b)(a + b)
(3 + 2√5)(3 - 2√5) = (3)² - (2√5)²
= 9 - 4(5)
= 9 - 20
= -11
So, (3 - √5)(3 - 2√5) / (3 + 2√5)(3 - 2√5) = (3 - √5)(3 - 2√5) / (-11)
By multiplicative and distributive property,
(3 - √5)(3 - 2√5) = 3(3) - 3(2√5) - 3(√5) + 2√5(√5)
= 9 - 6√5 - 3√5 + 2(5)
= 9 - 9√5 + 10
= 19 - 9√5
Now, (3 - √5)(3 - 2√5) / (-11) = (19 - 9√5) / (-11)
= 19/(-11) - 9√5/(-11)
= 9√5/11 - 19/11
So, a√5 - 19/11 = 9√5/11 - 19/11
a√5 - 19/11 + 19/11 = 9√5/11
a√5 = 9√5/11
a = 9/11
Therefore, the value of a is 9/11
HOPE THIS HELPS YOU