Math, asked by Siya2612, 1 year ago

3-√5/3+2√5 = a √(5- b/11)...... Find the values of a and b.


Siya2612: Are you out of your mind
Siya2612: Use your mind when you are talking to a girl
Siya2612: I take offence to it
Siya2612: I can easily report you to the police
Siya2612: well you see i already have a screenshot of it

Answers

Answered by yashusakku
4

Answer:

hope it will help you thank you

Attachments:
Answered by payalchatterje
2

Correct question is

 \frac{3 -  \sqrt{5} }{3 + 2 \sqrt{5} }  = a \sqrt{5}  -  \frac{b}{11}

,find the values of a and b.

Answer:

Required value of a is  \frac{9}{19} and value b is 11.

Step-by-step explanation:

Here

 \frac{3  -   \sqrt{5} }{3 + 2 \sqrt{5} }

We are multiplying denominator and numerator by (3-2√5) .

 \frac{(3 -  \sqrt{5})(3 - 2 \sqrt{5} ) }{(3 + 2 \sqrt{5} )(3 - 2 \sqrt{5} )}  \\  =  \frac{9   - 6 \sqrt{5} - 3 \sqrt{5}  + 2 \times 5 }{ {3}^{2} -  {(2 \sqrt{5} )}^{2}  }  \\  =  \frac{9 - 9 \sqrt{5} + 10 }{9 - 20}  \\  =  \frac{19 - 9 \sqrt{5} }{ - 19}  \\  =  \frac{19}{ - 19}  -  \frac{9 \sqrt{5} }{ - 19}  \\  =  - 1 +  \frac{9 \sqrt{5} }{19}

According to question,

 - 1 +  \frac{9 \sqrt{5} }{19}  = a \sqrt{5}  -  \frac{b}{11}

We are comparing both side,

a =  \frac{9}{19}

 - 1 =  -  \frac{b}{11}  \\  \frac{b}{11} = 1 \\ b = 11

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions