Math, asked by yuvraj2890, 1 year ago

(3/5)^3 × (3/5)^-6 = (3/5)^2x-1 solve it please​

Answers

Answered by mcraiglopezpd3bvo
1

Step-by-step explanation:

(3/5)³ x (3/5)⁻⁶ = (3/5)²ˣ⁻¹

(3/5)³⁺⁽⁻⁶⁾ = (3/5)²ˣ⁻¹

(3/5)⁻³ = (3/5)²ˣ⁻¹

⇒ -3 = 2x - 1

    -3 + 1 = 2x

      x = -2/2

∴x = -1

Answered by TRISHNADEVI
1

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \:  \:  \underline{ \bold{ \:  \: FORMULA   \:  \:  \: USED :   \leadsto \:  \: }} \\  \\  \tt{1. \:  \:  \red{a {}^{m} \times a {}^{n}   = a {}^{m + n}} } \\   \\ \tt{2. \:  \: If \:  \:  \red{a {}^{m} = a {}^{n}} \:  \:  \: then, \: \:   \red{m = n}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt{( \frac{3}{5}) {}^{3} \times ( \frac{3}{5}   ) {}^{ - 6} = ( \frac{3}{5} ) {}^{2x - 1}  } \\  \\  \tt{ \implies \:( \frac{3}{5} ) {}^{ 3 + ( - 6)}  = ( \frac{3}{5} ) {}^{2x - 1}  } \\  \\ \tt{ \implies \: ( \frac{3}{5} ) {}^{3 - 6} = ( \frac{3}{5}) {}^{2x - 1}   } \\  \\ \tt{ \implies \: ( \frac{3}{5} ) {}^{ - 3} = ( \frac{3}{5} ) {}^{2x - 1}  } \\  \\ \tt{ \implies \:  - 3 = 2x - 1} \\  \\ \tt{ \implies \: 2x =  - 3 + 1} \\  \\ \tt{ \implies \: 2x =  - 2} \\  \\ \tt{ \implies \: x =  \frac{ \:  - 2 \: }{2} } \\  \\  \:  \:  \:  \:  \:  \:  \tt{  \therefore \:  \: x =  - 1 }

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: VERIFICATION \:  \: } \mid}}}}}

 \underline{ \mathfrak { We \:  \:  have,} } \\  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\tt{\red{ x = -2}}} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{( \frac{3}{5}) {}^{3} \times ( \frac{3}{5}   ) {}^{ - 6} = ( \frac{3}{5} ) {}^{2x - 1}  } \\  \\  \tt{ \implies \:( \frac{3}{5} ) {}^{ 3 + ( - 6)}  = ( \frac{3}{5} ) {}^{2x - 1}  } \\  \\ \tt{ \implies \: ( \frac{3}{5} ) {}^{3 - 6} = ( \frac{3}{5}) {}^{2x - 1}   } \\  \\ \tt{ \implies \: ( \frac{3}{5} ) {}^{ - 3} = ( \frac{3}{5} ) {}^{2x - 1}  } \\  \\ \tt{ \implies \: ( \frac{3}{5} ) {}^{ - 3} = ( \frac{3}{5}  ) {}^{ 2\times ( - 1) - 1} }  \\  \\  \tt{ \implies \: ( \frac{3}{5} ) {}^{ - 3} = ( \frac{3}{5} )  {}^{ - 2 - 1}  } \\  \\  \tt{ \implies \: ( \frac{3}{5}) {}^{ - 3}  = ( \frac{3}{5}) {}^{ - 3}   } \\  \\  \tt{ \therefore \:  \: L.H.S. = R.H.S. } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \underline{ \bold{ \:  \: Hence \:  \:  \:  Verified. \:  \: }}

Similar questions