Math, asked by memanvisikka5370, 1 year ago

3+√5 ÷ 3-√5 rationalize the denominator

Answers

Answered by Anonymous
5

given :-

(3 + √5)/(3 - √5)

  \tt =  \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} }  \\  \\  \tt =  \frac{(3 +  \sqrt{5} )(3 +  \sqrt{5} )}{(3 -  \sqrt{5} )(3 +  \sqrt{5}) }  \\  \\  \tt =  \frac{ {(3 +  \sqrt{5}) }^{2} }{( {3})^{2}  - ( { \sqrt{5} })^{2} }  \\  \\  \tt =  \frac{( {3)}^{2}  + 2(3)( \sqrt{5} ) + (  { \sqrt{5} )}^{2}  }{9 - 5}  \\  \\  \tt =  \frac{9 + 6 \sqrt{5}  + 5}{4}  \\  \\  \tt =  \frac{14 + 6 \sqrt{5} }{4}  \\  \\  \tt =  \frac{ \cancel2 \times 2 +  \cancel2 \times 3 \sqrt{5} }{ \cancel2 \times 2}  \\  \\  \tt =  \boxed{ \frac{2 + 3 \sqrt{5} }{2} }

identities used :-

  • (a + b)² = a² + 2ab + b²

  • (a - b)(a + b) = a² - b²

Answered by Anonymous
9

Solution:-

 \bold{ \frac{3 +  \sqrt{5} }{3 -  \sqrt{5} } }

\textsf{By rationalizating the denominater}

 \bold{ =  \frac{3 +  \sqrt{5} }{3 -   \sqrt{5}   }  \times  \frac{3  +  \sqrt{5} }{3 +  \sqrt{5} } }

 \bold{ =  \frac{(  \sqrt{5} +  3)  {}^{2}   }    {(3 -  \sqrt{5} )(3 +  \sqrt{5}) } }

By,using the identity (a+b)²= a²+2ab+b²

By, using the identity (a+b)(a-b)= a²-b²

 =  \bold{ \frac{( \sqrt{5})  {}^{2} + 2 \times  \sqrt{5 }   \times 3 + (3) {}^{2} }{3 {}^{2} -  { \sqrt{} (5})^{2}  } }

 \bold{ =  \frac{5 + 6 \sqrt{5}  + 9}{9 - 5} }

 \bold{ =  \frac{14 + 6 \sqrt{5} }{4}}

\boxed{\red{ \bold{ =  \frac{7 + 3 \sqrt{5} }{2}} }}

Similar questions