Math, asked by StarTbia, 1 year ago

3√5-√7/3√3+√2 , Simplify the given number by rationalising the denominator.

Answers

Answered by mysticd
144
Given (3√5-√7)/(3√3 + √2)

=[(3√5-√7)(3√3-√2)]/[(3√3+√2)(3√3-√2)]

=[9√15-3√10-3√21+√14]/[(3√3)²-(√2)²]

[ Since x²-y² =(x+y)(x-y)]

=[9√15-3√10-3√21+√14]/(27-2)

= (9√15-3√10-3√21+√14)/25

••••

••••
Answered by pinquancaro
140

Answer:

=\frac{9\sqrt{15}-3\sqrt{10}-3\sqrt{21}+\sqrt{14}}{25}        

Step-by-step explanation:

Given : Expression \frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}

To find : Simplify the given number by rationalizing the denominator?

Solution :

\frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}

Rationalizing the denominator by multiplying and dividing denominator by opposite sign,

=\frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}\times\frac{3\sqrt{3}-\sqrt{2}}{3\sqrt{3}-\sqrt{2}}

=\frac{(3\sqrt{5}-\sqrt{7})(3\sqrt{3}-\sqrt{2})}{(3\sqrt{3})^2-(\sqrt{2})^2}

=\frac{9\sqrt{15}-3\sqrt{10}-3\sqrt{21}+\sqrt{14}}{27-2}

=\frac{9\sqrt{15}-3\sqrt{10}-3\sqrt{21}+\sqrt{14}}{25}

Similar questions