Math, asked by vishnupriyarnath, 8 months ago

3+5+7+..........................+401 Please find the sum.......... .

Answers

Answered by ıtʑFᴇᴇʟɓᴇãᴛ
3

Answer:

3+5+7+..........+401

d=a2-a1

d= 5-3

d = 2

an = a+ (n-1)d

401 = 3+(n-1)2

401=3+2n-2

401=2n+1

2n=401-1

2n=400

n=400/2

n=200

Sn= n/2 (a+an)

S200 = 200/2 (3+401)

=100(404)

Sum = 40400

hope it may help you........

Answered by Anonymous
10

Given:

  • A sum of series is given which is in AP.
  • The series is 3+5+7+9+....401.

To Find:

  • The sum of the series.

Answer:

Here the given series is ,

3+5+7+9+..............+401.

And from the AP ,

  • First term = 3
  • Common Difference = (5-3)=2.

Now we must find which term is 401 in order to find the sum of series.

\large{\underline{\boxed{\red{\bf{\leadsto T_{n}=a+(n-1)d}}}}}

\sf{\implies T_{n}=3+(n-1)2}

\sf{\implies 401=3+(n-1)2}

\sf{\implies 401-3=(n-1)2}

\sf{\implies 398=(n-1)2}

\sf{\implies (n-1)=\dfrac{398}{2}}

\sf{\implies (n-1)=199}

\sf{\implies n =199+1}

{\underline{\boxed{\red{\bf{\longmapsto n=200}}}}}

Hence the total number of terms is 200.

\rule{200}5

Now sum of n terms of an AP is given by,

\large{\underline{\boxed{\red{\bf{\leadsto S_{n}=\dfrac{n}{2}[2a+(n-1)d]}}}}}

\sf{\implies S_{n}=\dfrac{200}{2}[2\times3+(200-1)2]}

\sf{\implies S_{n}=100[6+199\times2}

\sf{\implies S_{n}=100[6+398]}

\sf{\implies S_{n}=100\times 404}

{\underline{\boxed{\red{\bf{\longmapsto S_{n}=40400}}}}}

Hence the required answer is 40400.

Similar questions