Math, asked by srujanakurasala, 9 months ago

(3/6)^6 x (16/9)^5=(4/3)^x-3

Answers

Answered by BrainlyPopularman
8

GIVEN :

 \\  \implies{ \bold{ { \left( \frac{3}{6} \right) }^{6} \times { \left( \frac{16}{9} \right) }^{5} =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

TO FIND :

• Value of 'x' = ?

SOLUTION :

 \\  \implies{ \bold{ { \left( \dfrac{3}{6} \right) }^{6} \times { \left( \dfrac{16}{9} \right) }^{5} =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

 \\  \implies{ \bold{ { \left( \dfrac{1}{2} \right) }^{6} \times { \left( \dfrac{16}{9} \right) }^{5} =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

• We should write this as –

 \\  \implies{ \bold{ { \left( \dfrac{1}{2} \right) }^{6} \times { \left( \dfrac{ {2}^{4} }{ {3}^{2} } \right) }^{5} =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

 \\  \implies{ \bold{ { \left( \dfrac{1}{2} \right) }^{6} \times { \left( \dfrac{ {2}^{20} }{ {3}^{10} } \right) } =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

 \\  \implies{ \bold{ { \left( \dfrac{ {2}^{20 - 6} }{ {3}^{10} } \right) } =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

 \\  \implies{ \bold{ { \left( \dfrac{ {2}^{14} }{ {3}^{10} } \right) } =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

 \\  \implies{ \bold{ { \left( \dfrac{ {4}^{7} }{ {3}^{10} } \right) } =  \left( \dfrac{4}{3} \right)^{x - 3} }} \\

• Let's take log on both sides –

 \\  \implies{ \bold{ {log{ \left( \dfrac{ {4}^{7} }{ {3}^{10} } \right) }} =(x - 3) log{ \left( \dfrac{4}{3} \right) }}} \\

 \\  \implies{ \bold{ \dfrac{ {log{ \left( \dfrac{ {4}^{7} }{ {3}^{10} } \right) }}}{log{ \left( \dfrac{4}{3} \right) }} =(x - 3) }} \\

 \\  \implies{ \bold{log{ \left( \dfrac{ {4}^{7} }{ {3}^{10} } -  \dfrac{4}{3}  \right)} =(x - 3) }} \\

 \\  \implies \large{ \boxed{ \bold{x = 3 + log{ \left( \dfrac{ {4}^{7} }{ {3}^{10} } -  \dfrac{4}{3}  \right)}}}} \\

Answered by MaIeficent
38

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • ( { \frac{3}{6}) }^{6}  \times  { (\frac{16}{9}) }^{5}  =  { (\frac{4}{3}) }^{x - 3}  \\

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • The value of x

{\green{\underline{\underline{\bold{Solution:-}}}}}

 { (\frac{3}{6} )}^{6}  \times {(\frac{16}{9} )}^{5}  =  { (\frac{4}{3}) }^{x - 3}  \\  \\  \implies { (\frac{1}{2}) }^{6}  \times  { (\frac{ {2}^{4} }{ {3}^{2} }) }^{5}  =  {(\frac{4}{3} )}^{x - 3}  \\  \\  \implies { (\frac{1}{2} )}^{6}  \times  \frac{ {2}^{20} }{ {3}^{10} }  =  { (\frac{4}{3} )}^{ x - 3}  \\  \\  \implies  \frac{ {2}^{20 - 6} }{ {3}^{10} }  =  { (\frac{4}{3})}^{x - 3}  \\  \\  \implies  \frac{ {2}^{14} }{ {3}^{10} }  =  {( \frac{4}{3} )}^{x - 3}  \\  \\  \implies \frac{ {4}^{7} }{ {3}^{10} }  =  { (\frac{4}{3}) }^{x - 3}

Applying logarithm on both sides:-

 log( \frac{ {4}^{7} }{ {3}^{10} } )  =  log( { (\frac{4}{3} )}^{x - 3} )  \\  \\  \implies log( \frac{ {4}^{7} }{ {3}^{10} } )  = (x - 3) log( \frac{4}{3} )  \\  \\  \implies log( \frac{ {4}^{7} }{ {3}^{10}  }  -  \frac{4}{3} )  = ( x - 3) \\  \\  \implies3 +  log( \frac{ {4}^{7} }{ {3}^{10} } -  \frac{4}{3}  )  = x

Therefore:-

\boxed{x =3 +  log( \frac{ {4}^{7} }{ {3}^{10} } -  \frac{4}{3}  ) }

Similar questions