3+ 6+9+ ... +300, Find the sum of the given equation.
Answers
Answered by
6
a = 3
d = 3
L = 300
=> a + (n-1) d = 300
=> 3 + (n-1) (3) =300
=> (n-1) (3) = 297
=> n-1 = 99
=> n = 100
Now,
Required sum = n/2 ( a + L)
= 100 /2 ( 3 + 300)
= 50 × 303
= 15150
d = 3
L = 300
=> a + (n-1) d = 300
=> 3 + (n-1) (3) =300
=> (n-1) (3) = 297
=> n-1 = 99
=> n = 100
Now,
Required sum = n/2 ( a + L)
= 100 /2 ( 3 + 300)
= 50 × 303
= 15150
Answered by
7
ANSHWER
[YOUR ANSHWER]
GIVEN→↓
a → 3
d →3
L → 300
→ANSHWER←
→ a + (n-1) d →300
→ 3 + (n-1) (3) →300
→(n-1) (3) → 297
→ n-1 → 99
\ n }100
Now,
Required sum → n/2 ( a + L)
=→100 /2 ( 3 + 300)
→ 50 × 303
→ 15150
THANKS☺
[YOUR ANSHWER]
GIVEN→↓
a → 3
d →3
L → 300
→ANSHWER←
→ a + (n-1) d →300
→ 3 + (n-1) (3) →300
→(n-1) (3) → 297
→ n-1 → 99
\ n }100
Now,
Required sum → n/2 ( a + L)
=→100 /2 ( 3 + 300)
→ 50 × 303
→ 15150
THANKS☺
Similar questions