(3,6) और (-3,4) से
4
5. सभी खण्ड कीजिए।
(क) x और y में एक ऐसा संबंध ज्ञात कीजिए कि बिन्दु (x, y)
बिन्दु
समदूरस्थ हो।
(ख) यदि 3cos+A4हो तो जाँचिए कि-
1-tan? A
1+tan' A
= cos-A-sin'A है या नहीं।
2
Answers
Given : point (x,y) is equidistant from (3,6) and (-3,4).
To find : relation between x and y
Solution:
point (x,y) is equidistant from (3,6) and (-3,4).
=> √(x - 3)² + (y - 6)² = √(x -(-3))² + (y - 4)²
=> (x - 3)² + (y - 6)² = (x + 3)² + (y - 4)²
=> x² -6x + 9+ y² -12y + 36 = x² + 6x + 9 + y² - 8y + 16
=> -12x - 4y + 20 = 0
=> -3x - y + 5 = 0
=> 3x + y = 5
Another way :
Slope of (3,6) and (-3,4).
= 1/3
sloe of perpendicular line = - 3
Mid point of (3,6) and (-3,4). = (0 , 5)
Equation of line = y - 5 = (-3)(x -0)
=> y - 5 = -3x
=> 3x + y = 5
Learn more:
Find the value of x if p(x 2) is equidistant from the point a(2 -1)and b ...
brainly.in/question/8273420
The point which is equidistant to the points (9, 3),(7, -1) ,(-1,3)
brainly.in/question/11112362
3x + y = 5