Math, asked by shuklalaxmi571, 3 months ago

3-6i/4-2i simplify the solution

Answers

Answered by parikshitahuja32
1

Answer:

3i/2i

Step-by-step explanation:

3-6i/4-2i

3i(1-2)/2i(2-1)

=3i/2i

here is ur ans buddy

thanku

Answered by payalchatterje
0

Answer:

Required simple solution is \frac{6}{5}  -  \frac{9i}{10}

Step-by-step explanation:

Given,

 \frac{3 - 6i}{4 - 2i}

Here we want to simplify it.

 \frac{(3 - 6i)(4 + 2i)}{(4 - 2i)(4 + 2i)}  \\  =  \frac{12 + 6i  - 24i - 12 {i}^{2} }{16 + 8i - 8i -  {(2i)}^{2} }   \\  =  \frac{12 - 18i + 12}{16 - 4 {i}^{2} }  \\  =  \frac{24 - 18i}{16 + 4}  \\  =  \frac{24 - 18i}{20}  \\  =  \frac{24}{20}  -  \frac{18i}{20}  \\  =  \frac{6}{5}  -  \frac{9i}{10}

Here applied formula,

 {i}^{2}  =  - 1

This is a problem of Complex number of Algebra.

Some important Algebra formulas:

{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\  {(x  -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  {(x  + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  \\   {(x   -  y)}^{3}  =  {x}^{3}   -  3 {x}^{2} y + 3x {y}^{2}   -  {y}^{3} \\  {x}^{3}  +  {y}^{3}  =  {(x  +  y)}^{3}  - 3xy(x + y) \\ {x}^{3}   -  {y}^{3}  =  {(x   -   y)}^{3}   +  3xy(x  -  y) \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\    {x}^{2}  +  {y}^{2}  =  {(x - y)}^{2}   + 2xy \\ {x}^{2}   -  {y}^{2}  =  {(x   + y)}^{2}  - 2xy \\  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\ {x}^{3}   +   {y}^{3}  = (x - + y)( {x}^{2}   -  xy +  {y}^{2} )

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions