Math, asked by nrameshsi1581, 1 year ago

3/7 +(-16/11)+(-8/21)+(5/22)

Answers

Answered by school7jha
0

Answer:

-551/462

Step-by-step explanation:

3/7+(-16/11)+(-8/21)+(5/22)

3/7-16/11-8/21+5/22

LCM= 462

66×3/462-42×16/462-22×8/462+21×5/462

192/462-672/462-176/462+105/462

-480-71/462

-551/462 ans.

Answered by AbhijithPrakash
8

Answer:

\left(\dfrac{3}{7}\right)+\left(-\dfrac{16}{11}\right)+\left(-\dfrac{8}{21}\right)+\left(\dfrac{5}{22}\right)=-\dfrac{545}{462}\quad \left(\mathrm{Decimal:\quad }\:-1.17965\dots \right)

Step-by-step explanation:

\left(\dfrac{3}{7}\right)+\left(-\dfrac{16}{11}\right)+\left(-\dfrac{8}{21}\right)+\left(\dfrac{5}{22}\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

=\dfrac{3}{7}-\dfrac{16}{11}-\dfrac{8}{21}+\dfrac{5}{22}

\mathrm{Least\:Common\:Multiplier\:of\:}7,\:11,\:21,\:22

\mathrm{Prime\:factorization\:of\:}7:\quad 7

\mathrm{Prime\:factorization\:of\:}11:\quad 11

\mathrm{Prime\:factorization\:of\:}21:\quad 3\cdot \:7

\mathrm{Prime\:factorization\:of\:}22:\quad 2\cdot \:11

\mathrm{Compute\:a\:number\:comprised\:of\:factors\:that\:appear\:in\:at\:least\:one\:of\:the\:following:} 7,\:11,\:21,\:22

=7\cdot \:11\cdot \:3\cdot \:2

\mathrm{Multiply\:the\:numbers:}\:7\cdot \:11\cdot \:3\cdot \:2=462

=462

\mathrm{Adjust\:Fractions\:based\:on\:the\:LCM}

\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its} \mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:462

\mathrm{For}\:\dfrac{3}{7}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:66

\dfrac{3}{7}=\dfrac{3\cdot \:66}{7\cdot \:66}=\dfrac{198}{462}

\mathrm{For}\:\dfrac{16}{11}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:42

\dfrac{16}{11}=\dfrac{16\cdot \:42}{11\cdot \:42}=\dfrac{672}{462}

\mathrm{For}\:\dfrac{8}{21}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:22

\dfrac{8}{21}=\dfrac{8\cdot \:22}{21\cdot \:22}=\dfrac{176}{462}

\mathrm{For}\:\dfrac{5}{22}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:21

\dfrac{5}{22}=\dfrac{5\cdot \:21}{22\cdot \:21}=\dfrac{105}{462}

=\dfrac{198}{462}-\dfrac{672}{462}-\dfrac{176}{462}+\dfrac{105}{462}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{198-672-176+105}{462}

\mathrm{Add/Subtract\:the\:numbers:}\:198-672-176+105=-545

=\dfrac{-545}{462}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=-\dfrac{545}{462}

Similar questions