Math, asked by amar8625, 9 months ago

3+√7/3 -√7=a+b√7 find the volue of a and b.

Answers

Answered by BrainlyPopularman
3

GIVEN :

  \\ \implies  {\bold{ \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} } = a + b \sqrt{7}  }} \\

TO FIND :

• Value of 'a' and 'b' = ?

SOLUTION :

  \\ \implies  {\bold{ \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} } = a + b \sqrt{7}  }} \\

• Rationalization –

  \\ \implies  {\bold{ \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} } \times  \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}  }} \\

  \\ \implies  {\bold{ \dfrac{(3 +  \sqrt{7})^{2}  }{ {(3)}^{2}  - ( \sqrt{7})^{2}  }= a + b \sqrt{7}  }} \\

  \\ \implies  {\bold{ \dfrac{(3 +  \sqrt{7})^{2}  }{ {(3)}^{2}  - ( \sqrt{7})^{2}  }= a + b \sqrt{7}  \:  \: \:  \:  \left[ \:   \because \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2} \:  \right]}} \\

  \\ \implies  {\bold{ \dfrac{(3 +  \sqrt{7})^{2}  }{9-7}= a + b \sqrt{7}  \:  \: \:  \:  \left[ \:   \because \: (a + b)^{2}=  {a}^{2}  +  {b}^{2} + 2ab \:  \right]}} \\

  \\ \implies  {\bold{ \dfrac{(3)^{2}  +  (\sqrt{7})^{2}  + 2(3)( \sqrt{7})}{9-7}= a + b \sqrt{7}}} \\

  \\ \implies  {\bold{ \dfrac{9 +  7+ 6( \sqrt{7})}{2}= a + b \sqrt{7}}} \\

  \\ \implies  {\bold{ \dfrac{16+ 6( \sqrt{7})}{2}= a + b \sqrt{7}}} \\

  \\ \implies  {\bold{ \dfrac{2 \{8+ 3( \sqrt{7}) \}}{2}= a + b \sqrt{7}}} \\

  \\ \implies  {\bold{8 + 3 \sqrt{7} = a + b \sqrt{7}}} \\

• Now compare –

  \\ \implies \large { \boxed {\bold{a = 8 \:  \: , \:  \: b = 3}}} \\

Answered by MaIeficent
27

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} } = a + b \sqrt{7 }

{\blue{\underline{\underline{\bold{Concept \: used\:here:-}}}}}

  • Rationalising of the numbers.

{\green{\underline{\underline{\bold{Solution:-}}}}}

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7}

By rationalising:-

 \frac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  \times  \frac{3 +  \sqrt{7} }{3 +  \sqrt{7} }  = a + b \sqrt{7} \\  \\  \implies  \frac{ {(3 +  \sqrt{7} )}^{2} }{ {3}^{2} -  {( \sqrt{7} )}^{2}  } = a + b \sqrt{7}  \: \: \: \:  [(a+b) (a-b) = {a}^{2}-{b}^{2}]\\  \\  \implies \frac{ {3}^{2}  +  { (\sqrt{7})  }^{2}  + 2(3)( \sqrt{7)} }{9- 7}  = a + b \sqrt{7}\: \: \: \:  [{(a+b)}^{2} = {a}^{2}+{b}^{2}+2ab] \\  \\  \implies \frac{9 + 7 + 6 \sqrt{7} }{ 2}  = a + b \sqrt{7}  \\  \\  \implies \frac{16 + 6 \sqrt{7} }{2}  = a + b \sqrt{7}

Take 2 as a common term in the numerator

\implies \frac{2(8 + 3 \sqrt{7} )}{2}  = a + b \sqrt{7}  \\  \\  \implies8 + 3 \sqrt{7}  = a + b \sqrt{7}

Now comparing the values of a+ b√7 with 8+3√7

\boxed{a = 8}

\boxed{b = 3 }

Similar questions