Math, asked by sweenaldias, 16 days ago

[(3/7^4x3/7^5)]divided by (3/7)^7

Answers

Answered by swethassynergy
0

\frac{1}{11907} = (\frac{3}{7^{4} }×\frac{3}{7^{5} })÷(\frac{3}{7})⁷

Step-by-step explanation:

Given:

(\frac{3}{7^{4} }×\frac{3}{7^{5} })÷(\frac{3}{7})⁷

To find:

Simplify the term

Solution:

  • We have to simplify the terms. We thus simplify the fractional power term into a simple fractional number.
  • The product of power term (aˣ)(aᵇ)=aˣ⁺ᵇ is given by aˣ⁺ᵇ
  • On dividing (1÷y) we get  \frac{1}{y}=y^{-1}, the inverse of y.  

(\frac{3}{7^{4} }×\frac{3}{7^{5} })÷(\frac{3}{7})⁷

(\frac{3}{7^{4} }×\frac{3}{7^{5} })

               

      (\frac{3}{7})⁷

The whole power can be split as (\frac{3}{7})⁷=\frac{3^{7} }{7^{7} }. Applying this we get,

(\frac{3}{7^{4} }×\frac{3}{7^{5} })

                   

      \frac{3^{7} }{7^{7} }

\frac{1}{y}=y^{-1} which is the inverse of term y when dividing the term, On applying this format  \frac{3^{7} }{7^{7} } can be \frac{7^{7} }{3^{7} }.

(\frac{3}{7^{4} }×\frac{3}{7^{5} }\frac{7^{7} }{3^{7} }

Applying the formula (aˣ)(aᵇ)=aˣ⁺ᵇ

3²  ×  7⁷

  7⁷7²    3⁷

On splitting the power terms we get 3⁷=3²3⁵ and 7⁹=7⁷7²

Canceling the like terms we get,

   1      

 7²×3⁵

7²=49 and  3⁵=243 on applying this we get,

  1        

     49×243

\frac{1}{11907}

Thus we get the simple fractional number from the power of the fractional number.

\frac{1}{11907}

Hence,

On simplification we get,

 (\frac{3}{7^{4} }×\frac{3}{7^{5} })÷(\frac{3}{7})⁷ =   \frac{1}{11907}    

                       

Similar questions