Math, asked by sweenaldias, 16 days ago

[(3/7^4x3/7^5)]divided by (3/7)^7

Answers

Answered by SISRAM876
0

Answer:

I think if we divide first number to second number so the answer could be about 100 aur 50

Answered by pulakmath007
0

\displaystyle \sf{\bigg[  \: {\bigg( \frac{3}{7} \bigg)}^{4} \times  {\bigg( \frac{3}{7} \bigg)}^{5}  \: \bigg] \div {\bigg( \frac{3}{7} \bigg)}^{7}   } =  \frac{9}{49}

Given :

\displaystyle \sf{\bigg[  \: {\bigg( \frac{3}{7} \bigg)}^{4} \times  {\bigg( \frac{3}{7} \bigg)}^{5}  \: \bigg] \div {\bigg( \frac{3}{7} \bigg)}^{7}   }

To find :

The value of the expression

Formula :

We are aware of the formula on indices that :

 \sf{1. \:  \:  {a}^{m}  \times  {a}^{n} =  {a}^{m + n}  }

 \displaystyle \sf{2. \:  \:   \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{\bigg[  \: {\bigg( \frac{3}{7} \bigg)}^{4} \times  {\bigg( \frac{3}{7} \bigg)}^{5}  \: \bigg] \div {\bigg( \frac{3}{7} \bigg)}^{7}   }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{\bigg[  \: {\bigg( \frac{3}{7} \bigg)}^{4} \times  {\bigg( \frac{3}{7} \bigg)}^{5}  \: \bigg] \div {\bigg( \frac{3}{7} \bigg)}^{7}   }

\displaystyle \sf{ =\bigg[  {\bigg( \frac{3}{7} \bigg)}^{(4 + 5)}  \div {\bigg( \frac{3}{7} \bigg)}^{7}   }\bigg]  \:  \: \bigg[ \because \:  {a}^{m} \times  {a}^{n}  =  {a}^{m + n}  \bigg]

\displaystyle \sf{ =\bigg[  {\bigg( \frac{3}{7} \bigg)}^{9}  \div {\bigg( \frac{3}{7} \bigg)}^{7}   }\bigg]

\displaystyle \sf{ = {\bigg( \frac{3}{7} \bigg)}^{9 - 7}   \:  \: \bigg[ \because \:  {a}^{m}  \div   {a}^{n}  =  {a}^{m  -  n}  \bigg] }

\displaystyle \sf{  =  {\bigg( \frac{3}{7} \bigg)}^{2}  }

\displaystyle \sf{  =  \frac{ {3}^{2} }{ {7}^{2} }  }

\displaystyle \sf{  =  \frac{9}{ 49 }  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

2. If 2x× 4x=(8)1/3 × (32)1/5 ,then find the value of x

https://brainly.in/question/14155738

Similar questions