3√7/√5+√2-5√5/√2+√7+2√2/√7+√5 Simplify
Answers
Answered by
3
Step-by-step explanation:
Given : Expression \frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}
To find : Simplify the given number by rationalizing the denominator?
Solution :
\frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}
Rationalizing the denominator by multiplying and dividing denominator by opposite sign,
=\frac{3\sqrt{5}-\sqrt{7}}{3\sqrt{3}+\sqrt{2}}\times\frac{3\sqrt{3}-\sqrt{2}}{3\sqrt{3}-\sqrt{2}}
=\frac{(3\sqrt{5}-\sqrt{7})(3\sqrt{3}-\sqrt{2})}{(3\sqrt{3})^2-(\sqrt{2})^2}
=\frac{9\sqrt{15}-3\sqrt{10}-3\sqrt{21}+\sqrt{14}}{27-2}
=\frac{9\sqrt{15}-3\sqrt{10}-3\sqrt{21}+\sqrt{14}}{25}
Similar questions