Math, asked by varunvarunsandeshvar, 7 months ago

(√3+√7)^
 {?}^{2}

Answers

Answered by aryan073
3

Step-by-step explanation:

 {( \sqrt{3}  +  \sqrt{7} )}^{2}  = 3 + 7 + 2 \sqrt{21}  = 10 + 2 \sqrt{21}

Answered by Anonymous
28

Question :-

find \: value \: of \:  ({ \sqrt{3} +  \sqrt{7}  })^{2}

Required Answer :-

We can see that, on the given question, (a+b)² will satisfy.

and Hence, we can solve this question by using the formula for (a+b)² by supposing a = √3 and b= √7

Now,

Before solving this question, We should solve (a+b)²

=>

( a+b) ² = a² +b² + 2ab

So,

We can solve (√3+√7)² as =>

 {( \sqrt{3} +  \sqrt{7}  )}^{2}  -  - (using \:  ({a + b))}^{2}  \\  =  >  { \sqrt{3} }^{2}  +  { \sqrt{7} }^{2}  + 2 \times  \sqrt{3} \times  \sqrt{7}   \\  =  > 3 + 7 + 2 \times  \sqrt{21}  \\  =  > 10 + 2 \sqrt{21}

Hence, our answer of question (3+7)² = 10+221

 -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -

Some useful algebraic identities are =

  • (a+b)² = a² + b² + 2ab

  • (a-b)² = a² +b² - 2ab

  • a² - b² = (a+b (a-b)

  • (a+b) (a+c) = a² + a(a+b) + ab

  • (a+b+c)² = a²+b²+c²+2ab+2bc+2ac

  • (a+b)³ = a³+b³+3ab(a+b)

  • (a-b)³ = a³-b³- 3ab(a-b)

  • a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)

Similar questions