Math, asked by tiktube21, 2 months ago

(3+√8)² + 1/(3+√8)²

please answer with steps and don't spawn

Answers

Answered by user0888
12

Topic: Rationalization, Polynomials

________________________________________

To Evaluate

(3+\sqrt{8} )^2+\dfrac{1}{(3+\sqrt{8})^2}

________________________________________

Solution

What can we observe?

We see the two terms are all squares. If we try evaluating directly, the calculation will be long, since we should collect like terms.

We Can Observe

In this situation, we have some algebraic identities to use. Squaring both sides will double the exponent. Here, we are using (a+b)^2=a^2+2ab+b^2 on the sum.

Let t=3+\sqrt{8}. Then \dfrac{1}{t} =3-\sqrt{8}.

The value of t+\dfrac{1}{t} is so 6.

\rightarrow t+\dfrac{1}{t}=6

Square both sides. Here, a=t and b=\dfrac{1}{t}.

\rightarrow (t+\dfrac{1}{t})^2=6^2

\rightarrow t^2+2\dfrac{t}{t} +\dfrac{1}{t^2} =36

\rightarrow t^2+\dfrac{1}{t^2} =34

After we resubstitute the value of t we get,

\rightarrow (3+\sqrt{8} )^2+\dfrac{1}{(3+\sqrt{8} )^2} =34

So, the value of evaluation is 34.

Answered by ItzFadedGuy
14

Identity used

In this problem, we are going to use the below identity:

\rightarrow (a + b)^2 = a^2+b^2+2ab

Solution:

Let us first add the following:

\rightarrow 3+ \sqrt{8} + \dfrac{1}{3+ \sqrt{8}}

On taking LCM, we get:

\rightarrow \dfrac{(3+ \sqrt{8})(3+ \sqrt{8})+1}{3+ \sqrt{8}}

On using identity, we get:

\rightarrow \dfrac{9+8+6 \sqrt{8}+1}{3+ \sqrt{8}}

\rightarrow \dfrac{18+6 \sqrt{8}}{3+ \sqrt{8}}

On taking 6 as common factor in numerator, we get:

\rightarrow \dfrac{6(3+ \sqrt{8})}{3+ \sqrt{8}}

\rightarrow 6

Therefore,

\rightarrow 3+ \sqrt{8} + \dfrac{1}{3+ \sqrt{8}} = 6

On squaring on both sides, we get:

\rightarrow (3+ \sqrt{8} + \dfrac{1}{3+ \sqrt{8}})^2 = (6)^2

Here,

  • a = 3+ \sqrt{8}
  • b = \dfrac{1}{3+ \sqrt{8}}

Again, by using identity, we get:

\rightarrow (3+ \sqrt{8})^2 + (\dfrac{1}{3+ \sqrt{8}})^2+2 \times (3+ \sqrt{8}) \times (\dfrac{1}{3+ \sqrt{8}}) = 36

\rightarrow (3+ \sqrt{8})^2 + (\dfrac{1}{3+ \sqrt{8}})^2+2  = 36

\rightarrow (3+ \sqrt{8})^2 + (\dfrac{1}{3+ \sqrt{8}})^2 = 36-2

\rightarrow (3+ \sqrt{8})^2 + (\dfrac{1}{3+ \sqrt{8}})^2 = 34

Similar questions