Chinese, asked by sonikumarimarch22, 4 months ago

Ꮞ3
81a
2
10/12
 \sec(?)  \cot( log_{ \beta  \binom{ log_{ \beta  \gamma e \gamma  \gamma  \gamma  \gamma  \gamma  \beta  \alpha  \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ log_{ log_{ log_{\%e \infty  \infty \%vhmcgtmv}(?) }(?) }(?) }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }(?) }{?} }(?) )

Answers

Answered by prapti483
0

In probability theory and statistics, the beta-binomial distribution is a family of discrete probability distributions on a finite support of non-negative integers arising when the probability of success in each of a fixed or known number of Bernoulli trials is either unknown or random. The beta-binomial distribution is the binomial distribution in which the probability of success at each of n trials is not fixed but randomly drawn from a beta distribution. It is frequently used in Bayesian statistics, empirical Bayes methods and classical statistics to capture overdispersion in binomial type distributed data.

Similar questions