Math, asked by patelanshul252, 11 months ago

3^(a)=27^(b+1) and 5^(b)=25^(a-1) find a+b​

Answers

Answered by mohammeddashline
0

Answer:

here it is: a+b

Answered by knjroopa
2

Step-by-step explanation:

Given 3^(a)=27^(b+1) and 5^(b)=25^(a-1) find a+b

  • Given 3^a = 27^b + 1
  •         3^a = 3^3 (b + 1)
  •        3^a = 3^3b + 3  
  • So a = 3b + 3 (bases are same so exponents are equal)
  •   Also 5^b = 25^a – 1
  •             5^b = 5^2 (a – 1)
  •               5^b = 5^2a – 2
  •    So b = 2a – 2
  • Now a = 3b + 3
  •    So a = 3(2a – 2) + 3
  •    So a = 6a – 6 + 3
  •  Now – 5a = - 3
  • Or a = 3/5
  • Now b = 2a – 2
  •             = 2(3/5) – 2
  • Or b = - 4/5
  • So a + b = 3/5 + (-4/5)
  •                  = 3/5 – 4/5
  •                       = - 1/5

Reference link will be

https://brainly.in/question/14671656

Similar questions