Physics, asked by hansikabatra5, 1 year ago

3. A charge q is uniformly distributed along an insulating straight wire of length 2 l as shown in

Fig. 24.34. Find an expression for the electric potential at a point located a distance d from the
distribution along its perpendicular bisector.

Answers

Answered by Agastya0606
0

Given: A charge q is uniformly distributed along an insulating straight wire of length 2 l.

To find: An expression for the electric potential at a point located a distance d from the  distribution along its perpendicular bisector.

Solution:

  • Consider a small element dx of the rod at distance x from mid point.
  • Then Potential due to the small element dx will be:

                 dPE = k(qdx / (2l√(d²+x²)

  • So total Potential Energy will be:

                 ∫ k(qdx / (2l√(d²+x²)          ( here limits of integration is from -l to l)

  • Now consider cos Ф = d / √(d²+x²) .
  • Differentiating, we get:

                 dx = (d / sec²Ф) dФ

  • So when x --> -l, Ф --> Ф1

                 tan^-1 (-l/d)

  • And when x --> l, Ф --> Ф2

                 tan^-1 (l/d)

  • So therefore:

                 PE = ∫( k q cosФ d / 2l d cos²Ф ) dФ  

                 ( here limits of integration is from Ф1 to Ф2)

                 PE = ∫( k q / 2l )  sec Ф dФ  

                 ( here limits of integration is from Ф1 to Ф2)

                 PE = ( k q / 2l ) ( ln ( sec Ф + tan Ф )  )

                 Applying limit from Ф1 to Ф2

                 PE = ( k q / 2l ) ln ( √(d² + x²) + l / √(d² + x²) - l )

Answer:

         So Potential energy is ( k q / 2l ) ln ( √(d² + x²) + l / √(d² + x²) - l )

Similar questions