Physics, asked by Anonymous, 1 month ago

3. A force of 10 N acts on a body of mass 2 kg for 3 seconds, initially at rest. Calculate:
(i) Velocity acquired by the body
(ii) Change in momentum of the body.​

Answers

Answered by Anonymous
27

 \large \rm {\underbrace{\underline{Elucidation:-}}}

━═━═━═━═━═━═━═━═━═━

 \dag \sf \red {\underline{\underline{Provided\: that:}}}

 \to \tt {Force(f)=10N}

 \to \tt {Mass\: of\: the\: body(m)=2kg}

 \to \tt {Time\:interval(t)=3s}

➻It is said that the body is intially at rest.

➻so,

 \to \tt {Intial\:velocity(u)=0}

━═━═━═━═━═━═━═━═━═━

 \dag \sf \blue {\underline{\underline{To\: determine:}}}

(I) Velocity acquired by the body,i.e,

 \to \tt {Final\: Velocity (v)=?}

(II) change in momentum,i.e,

 \to \tt {∆p=?}

━═━═━═━═━═━═━═━═━═━

 \dag \sf \orange {\underline{\underline{Using\: 1^{st}\: equation\: of\: motion}}}

 \implies \tt {\fbox{\underline{v=u+at}}}

➻But to use this kinematic equation,we need to calculate acceleration.

➻To calculate acceleration,we know,

 \to \tt {\fbox{Force=mass×acceleration}}

 \to \tt {F=m×a}

➻supplanting the given values,

 \to \tt {10N=2kg×a}

\large \to \tt {a=\frac{10}{2}}

 \to \tt \green {\boxed{\underline{Acceleration=5m/s^{2}}}}

━═━═━═━═━═━═━═━═━═━

➻As the acceleration is determined we can calculate final velocity.

 \to \tt {v=u+at}

 \to \tt {v=0+5×3}

 \colon \implies \tt \green {\fbox{\underline{v=15m/s}}}

━═━═━═━═━═━═━═━═━═━

 \dag \sf \pink {\underline{\underline{Change\: in\: momentum:}}}

➻Change in momentum=Final momentum-inital momentum

 \to \tt {∆p=mv-mu}

 \to \tt {∆p=2kg×15m/s-2kg×0}

 \to \tt {∆p=30kgm/s-0}

 \to \tt \green{\fbox{\underline{∆p=30kgm/s}}}

━═━═━═━═━═━═━═━═━═━

 \dag \sf \purple {\underline{\underline{Thereupon,}}}

➻The Velocity acquired by the body is 15m/s and the change in momentum of the body is 30kgm/s respectively.

━═━═━═━═━═━═━═━═━═━

Similar questions