Math, asked by bhargavisekhar2009, 1 month ago

3. A life insurance agent found the following data about distribution of ages of 100 policy holders. Calculate the median age. [Policies are given only to persons having age 18 years onwards but less than 60 years.] Below Below Below Below Below Below Below Below Below Age (in years) 20 25 30 35 40 45 50 55 60 Number of 2 6 24 45 78 89 92 98 100 policy holders​

Answers

Answered by Anonymous
19

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{Answer࿐}}}

In classical mechanics, Newton's laws of motion are three laws that describe the relationship between the motion of an object and the forces acting on it. The first law states that an object either remains at rest or continues to move at a constant velocity, unless it is acted upon by an external force.

\bold\mathbb{Answered \: By \: Ayush8378 }

================•✠•==============

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{Answer࿐}}}

In classical mechanics, Newton's laws of motion are three laws that describe the relationship between the motion of an object and the forces acting on it. The first law states that an object either remains at rest or continues to move at a constant velocity, unless it is acted upon by an external force.

\bold\mathbb{Answered \: By \: Ayush8378 }

================•✠•==============

\large \pmb{\bf{\underline{\gray{Solution :-}}}}

 \sf {Assume\:\:\displaystyle \lim_{x\to\infty}\left ( \dfrac{x!}{x} \right )^{\dfrac{1}{x}} = L}

Take log both sides, we get

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x!}{x} \right )}

 \pmb{\sf{\gray{ Put\ value\ of\ x! }}}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( \dfrac{x(x-1)!}{x} \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \left ( \dfrac{1}{x} \right )ln \left ( (x-1)! \right )}

 \sf {ln(L)=\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( (x-1)! \right )}{x}}

\pmb{\tt{Multiplying \ with\ ( x - 1 )\ in\ numerator\ and\ denominator\, we\ get\ }}

\sf {ln(L)=\displaystyle \lim_{x\to\infty} (x-1)\dfrac{ln \left ( (x-1)! \right )}{x(x-1)}}

 \pmb{\sf{We\ know\ that}}

 \sf {\displaystyle \lim_{x\to\infty} \dfrac{ln \left ( x! \right )}{x}=\infty}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \dfrac{x-1}{x}}

 \sf {ln(L)=(\infty) \displaystyle \lim_{x\to\infty} \left(1-\dfrac{1}{x}\right)}

Put value of limits,

 \sf {ln(L)=(\infty) \left(1-\dfrac{1}{\infty}\right)}

 \sf {ln(L)=(\infty) \left(1-0\right)}

 \sf {ln(L)=\infty}

 \sf{L=e^{\infty}}

 \sf{L=\infty}

Similar questions