Math, asked by ugetaj0, 16 days ago

3.
A metal pipe is 77 cm long. The inner diameter of a cross
section is 4 cm, the outer diameter being 4.4 cm
(see Fig. 13.11). Find its
(i) inner curved surface area,
(ii) outer curved surface area,
(iii) total surface area.​

Answers

Answered by ᎷꭱᎪɴꮪꮋ
5

Given :-

Length of pipe = > 77 cm

Inner Diameter = > 4 cm

Outer Diameter = > 4.4 cm

To Find :-

(i) inner curved surface area,

(ii) outer curved surface area,

(iii) total surface area.

Solution :-

(i) Inner curved surface area,

Radius of Inner C.S.A = > 2 cm

Inner \: C.S.A \:  \: of \: Pipe  =  > 2\pi \: rh \\  \\ Inner \: C.S.A \:  \: of \: Pipe  =  > \: 2 \times  \frac{22}{7}  \times 2 \times 77 \\  \\ Inner \: C.S.A \:  \: of \: Pipe  =  >2 \times  \frac{22}{\cancel {7}}  \times 2 \times \cancel {77} \\  \\ Inner \: C.S.A \:  \: of \: Pipe  =  >2 \times 22 \times 2  \times 11\\  \\ Inner \: C.S.A \:  \: of \: Pipe  =  >968 \:  {cm}^{2}

(ii) Outer curved surface area

Radius of Inner C.S.A = > 2.2 cm

 Outer \:\: C.S.A \:  \: of \: Pipe  =  &gt; 2\pi \: rh \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt; \: 2 \times  \frac{22}{7}  \times 2.2 \times 77 \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt;2 \times  \frac{22}{\cancel {7}}  \times 2.2 \times \cancel {77} \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt;2 \times 22 \times 2.2 \times 11 \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt;1064.8 \:  {cm}^{2} </strong></p><p><strong>[tex] Outer \:\: C.S.A \:  \: of \: Pipe  =  &gt; 2\pi \: rh \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt; \: 2 \times  \frac{22}{7}  \times 2.2 \times 77 \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt;2 \times  \frac{22}{\cancel {7}}  \times 2.2 \times \cancel {77} \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt;2 \times 22 \times 2.2 \times 11 \\  \\ Outer \: C.S.A \:  \: of \: Pipe  =  &gt;1064.8 \:  {cm}^{2}

(iii) Total surface area.

 =  &gt; Inner \: C.S.A + Outer \: C.S.A + 2 \times Area  \: of  \: Circles  \\  \\  =  &gt; 968\:  {cm}^{2}  + 1064.8 \:  {cm}^{2}  + 2 \times \pi \:  {r}^{2}  \\  \\ =  &gt;  2032.8 \:  {cm}^{2}  +   2 \times \frac{22}{7}  \times  ( {Outer Radius }^{2}  -  {Inner Radius}^{2} ) \\  \\ =  &gt;  2032.8 \:  {cm}^{2}  +  2 \times \frac{22}{7} \times  ( {2.2}^{2}  -  {2}^{2} ) \\  \\ =  &gt;  2032.8 \:  {cm}^{2}  + 2 \times  \frac{22}{7}  \times  (4.84 - 4) \\  \\ =  &gt;  2032.8 \:  {cm}^{2}  +   2 \times \frac{22}{7} (0.84) \\  \\ =  &gt;  2032.8 \:  {cm}^{2}  +2 \times \frac{22}{7}  \times 0.84 \\  \\  =  &gt; 2032.8 \:  {cm}^{2}  +   2 \times  \frac{22}{\cancel {7}}  \  \times  \cancel {0.84} \\  \\  =  &gt; 2032.8 \:  {cm}^{2}   + 2   \times   22 \times \: 0.12 \\  \\ =  &gt;  2032.8 \:  {cm}^{2}   +  2  \times 2.64 \\  \\ =  &gt;   {2032.8 \: cm}^{2}  + 5.28 \\  \\ =  &gt;   2038.08 \:  {cm}^{2}

Hence the answer is :-

(i) Inner curved surface area,

Answer = > 968 cm²

(ii) Outer curved surface area

Answer = > 1064.8 cm²

(iii) Total surface area.

Answer = > 2038.08 cm²

Hope it's helpful for you !!!

Similar questions