Math, asked by usamabin, 4 months ago

3. A right circular cylinder is inscribed in a sphere of radius 10. Express its volume and surface area as functions of its
height h.​

Answers

Answered by mathdude500
3

Given :-

  • A right circular cylinder is inscribed in a sphere of radius 10.

To Find :-

  • Volume and Surface area in terms of height.

Formula used :-

{{ \boxed{\large{\bold\red{Volume_{(Cylinder)}\: = \:\pi r^2 h }}}}}

{{ \boxed{\small{\bold\pink{Total \:  Surface Area_{(Cylinder)}\: = \:2\pi r(r + h )}}}}}

where,

  • r = radius of cylinder
  • h = height of cylinder

\begin{gathered}\Large{\underline{\bf{\color{red}CaLcUlAtIoN}}} \end{gathered}

\begin{gathered}\bf\red{Let,}  \end{gathered}

\begin{gathered}\longmapsto\:\:\bf{Radius\:is \:r\:units}. \end{gathered}

\begin{gathered}\longmapsto\:\:\bf{Height\:is \:2h\:units}. \end{gathered}

Using Pythagoras Theorem,

\begin{gathered}{\boxed{\bf{\pink{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\end{gathered}

\bf \:⟶  \:  {10}^{2}  =  {h}^{2}  +  {r}^{2}

\bf\implies \:100  = {r}^{2}  +  {h}^{2}

\bf\implies \: {r}^{2}  = 100 -  {h}^{2}

\bf\implies \:r =  \sqrt{100 -  {h}^{2} }

\begin{gathered}\bf\pink{So,}\end{gathered}

{{ {\large{\bold\red{Volume_{(Cylinder)}\: = \:\pi r^2 (2h) }}}}}

\bf\implies \:Volume = \pi \: (100 -  {h}^{2} )(2h)

\bf\implies \:Volume =2 \pi \: (100h -  {h}^{3} ) \: cu. \: units

\begin{gathered}\bf\pink{Also,} \end{gathered}

{{ \boxed{\small{\bold\pink{Total \:  Surface Area_{(Cylinder)}\: = \:2\pi r(r + 2h )}}}}}

\bf\:Area = 2\pi \:  \sqrt{100 -  {h}^{2} } (2h +  \sqrt{100 -  {h}^{2} } )sq.un

_________________________________________

Attachments:

usamabin: Thanks bro
mathdude500: welcome
usamabin: bro question no 4 or 5 or 6 be hal kr dya plz
Similar questions