Math, asked by arunamk2323, 8 months ago


3. a) The sum of two numbers is 18 and their product is 45, find the numbers.​

Answers

Answered by Uriyella
2
  • The numbers are 3 and 15 OR 15 and 3.

Given :

  • The sum of two numbers = 18.
  • The product of both numbers = 45.

Go Find :

  • The numbers.

Solution :

Let,

The first number be x.

The second number be y.

According to the question,

• x + y = 18 ––––––(1)

• xy = 45 ––––––(2)

From equation (1),

:\implies \rm x + y = 18 \\  \\ :\implies \rm x= 18 - y  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: (3)

Substitue the. equation (3) in equation (2),

:\implies \rm xy = 45 \\  \\  :\implies \rm (18 - y)y = 45 \\  \\  :\implies \rm 18y - {y}^{2}  = 45 \\  \\  :\implies \rm  {y}^{2}  - 18y + 45 = 0 \\  \\ \sf{By \: Splitting \: The \: Middle \: Term} \\  \\  :\implies \rm  {y}^{2}  - 15y - 3y + 45 = 0 \\  \\ :\implies \rm y(y - 15) - 3(y - 15) = 0 \\  \\ :\implies \rm (y - 3) \: (y - 15) = 0 \\  \\ :\implies \rm (y - 3) = 0 \: ; \: (y - 15) = 0 \\  \\ :\implies \rm y - 3 = 0 \: ; \: y - 15 = 0 \\  \\ :\implies \rm y = 3 \: ; \: y = 15

Hence,

The value of y is 3 or 15.

So, the second number is 3 or 15.

Now, substitute both the values of y in equation (1),

1 ) \:  \:  \: y = 3 \\  \\ :\implies \rm x + y = 18 \\  \\ :\implies \rm x + 3 = 18 \\  \\ :\implies \rm x = 18 - 3 \\  \\ :\implies \rm x = 15 \\  \\  \\  \\ 2) \:  \:  \:  y = 15 \\  \\ :\implies \rm x + y = 18 \\  \\ :\implies \rm x + 15 = 18 \\  \\ :\implies \rm x = 18 - 15 \\  \\ :\implies \rm x = 3

Hence,

The value of x is 15 or 3.

So, the first number is 15 or 3.

Hence,

The numbers are 3 & 15 or 15 & 3.

Similar questions