3 active and inert electrodes
Answers
ur answer is --- Cu, Ni & Ag.
hope it helps u...
plzz mark as brain list !
INTRODUCTION
We use two different half cells to measure how readily electrons can flow from one electrode to another, and the device used for measurement is called a voltmeter. The voltmeter measures the cell potential, denoted by Ecell, (in units of Volts, 1V=1J/C), which is the potential difference between two half cells. The salt bridge allows the ions to flow from one half cell to another but prevents the flow of solutions.
Zn(s) | Zn2+ (aq) || Cu2+ (aq)| Cu(s)
oxidation- (half-cell) (salt bridge) (half-cell)-reduction
Where we place the anode on the left and cathode on the right, "|" represents the boundary between the two phases, and "||" represents the salt bridge. There are two types of electrochemical cells:
A Reaction is spontaneous when the change in Gibb’s energy, ∆G is < 0.
A reaction is non-spontaneous when ∆G is > 0.
Galvanic Cell (aka Voltaic Cells)
Zn(s) | Zn2+ (aq) || Cu2+ (aq)| Cu(s)
A galvanic cell produces an electrical charge from the flow of electrons. The electrons move due to the Redox reaction. As we can see, Zn oxidizes to Zn2+ , while Cu2+ reduces to Cu. In order to understand the redox reaction, Solve the Redox equation.
First, split the reaction into two half reactions, with the same elements paired with one another.
Zn(S) → Zn+2(aq) Oxidation Reaction: takes place at the Anode
Cu+2(aq) → Cu(s) Reduction Reaction: Takes place at the Cathode
Next, we balance the two equations.
Oxidation: Zn(S) →Zn2+(aq) + 2e- (Anode)
Reduction: 2e- + Cu2+(aq) → Cu(s) (Cathode)
(Spontaneous redox reaction releases energy; The system does work on the surroundings.)
Finally, we recombine the two equations. As you can see, this equation was already balanced. However, not all cells are necessarily balanced. It is important to check each time. Galvanic cells are quite common. A, AA, AAA, D, C, etc. batteries are all galvanic cells. Any non-rechargeable battery that does not depend on an outside electrical source is a Galvanic cell.
Electrolytic Cell
Cu(s) | Cu2+(aq) || Ag+(aq) | Ag(s)
An electrolytic cell is a cell which requires an outside electrical source to initiate the redox reaction. The process of how electric energy drives the non-spontaneous reaction is called electrolysis. Whereas the galvanic cell used a redox reaction to make electrons flow, the electrolytic cell uses electron movement (in the source of electricity) to cause the redox reaction. In an electrolytic cell, electrons are forced to flow in the opposite direction. Since the direction is reversed of the voltaic cell, the E0cell for electrolytic cell is negative. Also, in order to force the electrons to flow in the opposite direction, the electromotive force that connects the two electrode-the battery must be larger than the magnitude of E0cell. This additional requirement of voltage is called overpotential.
Electrolytic cell for the example above:
Oxidation: Cu(s) → Cu2+ (aq)+2e- (anode)
Reduction: Zn2+ (aq)+2e- → Zn(s) (cathode)
(Nonspontaneous redox reaction absorbs energy to drive it; The surroundings do work on the system. )
Galvanic: turns chemical energy into electrical energy
Electrolytic Cell: turns electrical energy into chemical energy
The most common form of Electrolytic cell is the rechargeable battery (cell phones, mp3's, etc) or electroplating. While the battery is being used in the device it is a galvanic cell function (using the redox energy to produce electricity). While the battery is charging it is an electrolytic cell function (using outside electricity to reverse the completed redox reaction).
Inert & Active Electrode
An inert electrode is a metal submerged in an aqueous solution of ion compounds that transfers electrons rather than exchanging ions with the aqueous solution. It does not participate or interfere in the chemical reaction but serves as a source of electrons. Platinum is usually the metal used as an inert electrode. An active electrode is an electrode that can be oxidized or reduced in half reaction. For example, Cu; Cu can be oxidized to Cu2+ at the annode and one Cu2+ ion can also reduces to a Cu atom at the cathode. Cu is transfered from anode to cathode through the solution as Cu2+ from the example above.
inert electrode.jpg
Anode: Fe2+(aq) → Fe3+(s) + e-
Cathode: MnO4-(aq) + 8H+(aq) + 5e- → Mn2+(aq) +4H2O