Math, asked by shubhramahajan6128, 9 months ago

3. An iron ball of radius 21 cm is melted and recast into 27 spherical balls of the same radius. Find the radius of the each spherical ball.

Answers

Answered by Ignaive
7

AnswEr:

Reference of Image is shown in Diagram

\setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(5,0){20}}\put(25,30){\circle*{1}}\put(29,26){\sf\large{21 cm}}\end{picture}

  • It is given that 27 spherical balls are made from a sphere of 21 cm
  • Here, Volume of Sphere(21cm) is equal to the 27 Spherical balls.

 \rule{170}2

\underline{\bigstar\:\textsf{According \: to \: the \: Question \: now:}}

\sf\ : \implies\ Volume_{big \: sphere} = 27 \times\ Volume_{spherical \: ball} \\\\\\\sf\ : \implies\frac{4}{3} \pi r^{3} = 27 \times\ \frac{4}{3} \pi r^{3}\\\\\\\sf\ : \implies\cancel{\frac{4}{3} \pi} (21)^{3} = 27 \times\ \cancel{\frac{4}{3} \pi} r^{3}\\\\\\\sf\ : \implies\ 9261 = 27 \times\ r^{3}\\\\\\\sf\ : \implies\ r^{3} = \frac{\cancel{9261}}{\cancel{27}} \\\\\\\sf\ : \implies\ r^{3} = 343\\\\\\\sf\ : \implies\  r = \sqrt[3]{343}\\\\\\\sf\ : \implies\ r = \sqrt[3]{ 7 \times\ 7 \times\ 7}\\\\\\ : \implies\boxed{\bf\green\ r = 7}\\\\\therefore{\textsf{Hence,  the radius is \textbf{7cm}(each spherical ball)}}

Similar questions