3 angles of a quadrilaterals are in ratio 2:3:5 and fourth angle is 90degree, find measure of other 3 angles
Answers
Assumption
Angles are :-
2p , 3p , 5p , 90°
As we know that
= 360°
Hence,
2p + 3p + 5p + 90° = 360°
10p + 90° = 360°
10p = 360° - 90
10p = 270°
p = 27°
⇒ ∠1 = 2p
⇒ 2(27) = 54°
⇒ ∠2 = 3p
⇒ 3(27) = 81°
⇒ ∠3 = 5p
⇒ 5(27) = 135°
⇒ ∠4 = 90°
Now,
Verification
∠1 + ∠2 + ∠3 + ∠4 = 360°
54° + 81° + 135° + 90° = 360°
360° = 360°
Angles are 54°, 81°, 135° and 90°
one angle is of 90°
And other angles are in ratio of 2:3:5
So, let all angles be 2x, 3x, 5x, 90°
______________________________________
As we know that :
Due to angle sum property of quadrilateral.
⇒2x + 3x + 5x + 90 = 360
⇒5x + 5x = 360 - 90
⇒10x = 270
⇒x = 270/10
⇒x = 27°
_________________________________________
Now,
Angle 1 = 2x = 2(27) = 54°
Angle 2 = 3x = 3(27) = 81°
Angle 3 = 5x = 5(27) = 135°
Angle 4 = 90°