Math, asked by i74890, 3 months ago

3)
Area bounded by the ellipse
x2
y?
+
= 4 is ....8
4
16
[Part - 2, Chap. - 8]
TT
(A) 6410
[B) 3216
(C) 8T
(D)
64​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

Equation of ellipse,

 \frac{ {x}^{2} }{4}  +   \frac{ {y}^{2} }{16}  = 4 \\

 \implies\frac{ {x}^{2} }{16}  +   \frac{ {y}^{2} }{64}  = 1 \\

 \implies   \frac{ {y}^{2} }{64}  = 1  - \frac{ {x}^{2} }{16} \\

 \implies   {y}^{2}   = 64 - 4{x}^{2} \\

 \implies   y  =  \sqrt{64 - 4{x}^{2} }\\

Now, area under ellipse:

4 \int \limits^{4}_{0}  \sqrt{64 - 4 {x}^{2} } dx \\

 = 8 \int \limits^{4}_{0}  \sqrt{16-{x}^{2} } dx \\

 = 8 [ \frac{x}{2} \sqrt{16 -  {x}^{2} }  ]^{4} _{0}    +  8 \times  \frac{16}{2} [  \sin^{ - 1} ( \frac{x}{4} ) ] ^{4}_{0}   \\

 = 0 + 64( \sin^{ - 1} (1)  -  \sin ^{ - 1} (0) )

 = 64 \times  \frac{\pi}{2}  - 0 \\

 = 32\pi

Similar questions