Math, asked by Hasan4566, 9 months ago

3. Area of a square field is 3600m2. A rectangular field whose length is twice its width has
perimeter equal to perimeter of square field. Find the area rectangular field. (3200m)​

Answers

Answered by pawanrao12
0

Answer:

REFER TO ATTACHMENT

I HOPE IT'S HELPS U

MARK AS BRAINLIST ANSWER

GIVE THANKS TO MY ANSWERS

Attachments:
Answered by Truebrainlian9899
43

☞︎︎︎ Given :

 \:  \:  \:  \:  \:

★ Area of square field = 3600m²

 \:  \:  \:  \:  \:

★ length of rectangle = 2 × width

 \:  \:  \:  \:  \:

★ peremeter of square = peremeter of rectangle

 \:  \:  \:  \:  \:

☞︎︎︎ To Find :

 \:  \:  \:  \:  \:

★ Area of rectangular field

 \:  \:  \:  \:  \:

❥︎ First we have to find peremeter of square field

 \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:

☞︎︎︎ Solution :

 \:  \:  \:  \:  \:

 \:  \:  \:  \:  \: Formula :-

 \:  \:  \:  \:  \:

  \large \boxed{\looparrowright  \boxed{\mathtt{area = side \times side}}}

 \:  \:  \:  \:  \:

➪ 3600m² = side × side

 \:  \:  \:  \:  \:

➪ 3600 = side²

 \:  \:  \:  \:  \:

 \:  \:  \:  \:  \: ☞︎︎︎ On transposing the terms :

 \:  \:  \:  \:  \:

 \implies \:  \mathtt{ \sqrt{3600}  = side}

 \:  \:  \:  \:  \:

 \bigstar \:   \large\boxed{ \boxed{ \therefore  \: \mathtt{side = 60m}}}

 \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:

☕︎ Now ,

 \:  \:  \:  \:  \:

 \:  \:  \:  \:  \: Formula :-

 \:  \:  \:  \:  \:

 \large \mathtt{ \dashrightarrow \mathtt { \boxed{ \mathtt{perimeter = side \times 4}}}}

 \:  \:  \:  \:  \:

➪ pereter = 60 × 4

 \:  \:  \:  \:  \:

 \bigstar \:   \large\boxed{ \boxed{ \therefore  \: \mathtt{perimeter = 240m}}}

 \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:

❥︎ Since,

 \:  \:  \:  \:  \:

✯ perimeter of square = perimeter of rectangle

 \:  \:  \:  \:  \:

➪ 240m = 240m

 \:  \:  \:  \:  \:

Formula :-

 \:  \:  \:  \:  \:

 \mathtt{  \large{\dashrightarrow \mathtt { \boxed{ \mathtt{perimeter = 2(l + b)}}}}}

 \:  \:  \:  \:  \:

★ since,

 \:  \:  \:  \:  \:

✞︎ length = 2 × width

 \:  \:  \:  \:  \:

➪ 240m = 2 ( 2 × b + b )

 \:  \:  \:  \:  \:

➪ 240 = 4 x 2b

 \:  \:  \:  \:  \:

➪ 240 = 8 b

 \:  \:  \:  \:  \:

 \:  \:  \:  \:  \: ☞︎︎︎ On transposing the terms :

 \:  \:  \:  \:  \:

 \implies \mathtt{ \dfrac{240}{8}  = breadth}

 \:  \:  \:  \:  \:

 \bigstar \:   \large\boxed{ \boxed{  \: \mathtt{breadth = 40m}}}

 \:  \:  \:  \:  \:

❥︎ length = 2 × width

 \:  \:  \:  \:  \:

➪ length = 2 × 40m

 \:  \:  \:  \:  \:

 \bigstar \:   \large\boxed{  \boxed{  \therefore \mathtt{length = 80m}}}

 \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:

☕︎ Now ,

 \:  \:  \:  \:  \:

  \large { \rightarrow \boxed{\mathtt{area = length \times \: breadth}}}

 \:  \:  \:  \:  \:

☞︎︎︎ area = 80m × 40m

 \:  \:  \:  \:  \:

 \bigstar \:   \large\boxed{ \boxed{  \boxed{  \therefore \mathtt{area= 3200m {}^{2} }}}}

 \:  \:  \:  \:  \:

_____________________________________________

Similar questions