Math, asked by jarivalaarif, 2 months ago

3 B Solve.
6
(1) The first term of an A. P. is 1 and the sum of first 15 terms is 225,
find the common difference.​

Answers

Answered by prince5132
78

GIVEN :-

  • S_15 = 225.
  • First tearm of AP ( a ) = 1.

TO FIND :-

  • The common deference ( d ).

SOLUTION :-

As we know that,

 \implies  \displaystyle \sf \: S_n =  \frac{n}{2}  \bigg(2a  + (n - 1)d \bigg) \\

\implies  \displaystyle \sf \: S_{15} =  \frac{15}{2}  \bigg(2   + (15 - 1)d \bigg) \\

\implies  \displaystyle \sf \: 225 =  \frac{15}{2}  \bigg(2   + 14d \bigg) \\

\implies  \displaystyle \sf \:  \frac{225 \times 2}{15}  =2 +  14d \\

\implies  \displaystyle \sf \: 15 \times 2 = 2 + 14d \\

\implies  \displaystyle \sf \: 30 - 2 = 14d \\

\implies  \displaystyle \sf \: 28 = 14d \\

\implies  \displaystyle \sf \: d =  \frac{28}{14}  \\

\implies  \displaystyle \sf \: d = 2

Hence the required common deference is 2.

Answered by Anonymous
93

{\large{\pmb{\sf{\underline{RequirEd \; Solution...}}}}}

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Understanding \: the \: Question:}}}}}}}

This question says that we have to find out the common difference of the Arithmetic progression (AP) whose first term is 1 and the sum of the 15 terms is 225. Let us solve this question!

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Given \: that:}}}}}}}

Arithmetic progression is given.

The first term is 1

The sum of the 15 terms is 225

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{To \: find:}}}}}}}

The common difference

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Solution:}}}}}}}

⋆ The common difference = 2

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Using \: concept:}}}}}}}

{\small{\underline{\boxed{\sf{\star \: S_n \: = \dfrac{n}{2} \bigg(2a+(n-1)d\bigg)}}}}}

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Where...}}}}}}}

  • {\sf{n \: is \: no. \: of\: terms}}
  • {\sf{a \: denotes \: AP}}
  • {\sf{d \: denotes \: common \: difference}}

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Here...}}}}}}}

  • {\sf{n \: is \: 15}}
  • {\sf{S_n \: is \: 225}}
  • {\sf{a \: is \: 1}}
  • {\sf{d \: is \: to \: find}}

{\bigstar \:{\underline{\underline{\pmb{\sf{\purple{Full \: Solution:}}}}}}}

{\small{\underline{\boxed{\sf{S_n \: = \dfrac{n}{2} \bigg(2a+(n-1)d\bigg)}}}}} \\ \\ :\implies \sf S_n \: = \dfrac{n}{2} \bigg(2a+(n-1)d\bigg) \\ \\ :\implies \sf S_{15} \: = \dfrac{15}{2} \bigg(2(1) + (15-1)d\bigg) \\ \\ :\implies \sf S_{15} \: = \dfrac{15}{2} \bigg(2 + (15-1)d\bigg) \\ \\ :\implies \sf S_{15} \: = \dfrac{15}{2} \bigg(2 + (14)d\bigg) \\ \\ :\implies \sf S_{15} \: = \dfrac{15}{2} \bigg(2+14d\bigg) \\ \\ :\implies \sf 225 \: = \dfrac{15}{2} \bigg(2+14d\bigg) \\ \\ :\implies \sf \dfrac{225 \times 2}{15} \: = 2 + 14d \\ \\ :\implies \sf \dfrac{\cancel{225} \times 2}{\cancel{15}} \: = 2 + 14d \\ \\ :\implies \sf 15 \times 2 \: = 2 + 14d \\ \\ :\implies \sf 30 = 2 + 14d \\ \\ :\implies \sf 30 - 2 \: = 14d \\ \\ :\implies \sf 28 \: = 14d \\ \\ :\implies \sf \dfrac{28}{14} \: = 14d \\ \\ :\implies \sf \cancel{\dfrac{28}{14}} = d \\ \\ :\implies \sf 2 \: = d \\ \\ :\implies \sf d \: = 2 \\ \\ \sf Henceforth, \: common \: difference \: is \: 2


prince5132: Great
Similar questions