Physics, asked by aravsuraj812, 6 months ago

3 bulbs of resistance 20 ohms are connected in series circuitwith a 12 V battery. Find current.

Answers

Answered by snehitha2
2

Answer :

current = 0.2 A

Explanation :

\underline{\underline{\bf Series \ circuits:}}

  • Resistors are arranged in a chain.
  • Current is same through each resistor
  • Equivalent resistance, R = R₁ + R₂ + R₃ + ....

__________________________________

Given,

3 bulbs of resistance 20 Ω each are connected in series circuit with a 12 V battery.              

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\linethickness{0.4mm}\qbezier(1, 0)(1,0)(1,3)\qbezier(9.5,0)(9.5,0)(9.5,3)\qbezier(1,0)(2,0)(4.5,0)\qbezier(5.5,0)(5,0)(9.5,0)\put(5.4, 0.5){\line(0, - 1){1}}\put(5, 0.5){\line(0, - 1){1}}\put(4.5, 0.5){\line(0, - 1){1}}\put(4.77, 0.2){\line(0, - 1){0.5}}\put(5.2, 0.2){\line(0, - 1){0.5}}\put(6, 3){\line(1, 0){1}}\put(3.6, 3){\line(1,0){0.9}}\put(1, 3){\line(1,0){1}}\put(8.5, 3){\line(1,0){1}}\qbezier(2,3)(2,3)(2.2,3.3)\qbezier(2.8,3.3)(2.8,3.3)(3,3)\qbezier(2.2,3.3)(2.2,3.3)(2.5,3)\qbezier(2.8,3.3)(2.8,3.3)(2.5,3)\qbezier(3.3,3.3)(3.3,3.3)(3,3)\qbezier(3.3,3.3)(3.3,3.3)(3.6,3)\qbezier(4.8,3.3)(4.8,3.3)(4.5,3)\qbezier(4.8,3.3)(4.8,3.3)(5,3)\qbezier(5.2,3.3)(5.2,3.3)(5,3)\qbezier(5.2,3.3)(5.2,3.3)(5.5,3)\qbezier(5.8,3.3)(5.8,3.3)(5.5,3)\qbezier(5.8,3.3)(5.8,3.3)(6,3)\qbezier(7.3,3.3)(7.3,3.3)(7,3)\qbezier(7.3,3.3)(7.3,3.3)(7.5,3)\qbezier(7.8,3.3)(7.8,3.3)(7.5,3)\qbezier(7.8,3.3)(7.8,3.3)(8,3)\qbezier(8.3,3.3)(8.3,3.3)(8,3)\qbezier(8.3,3.3)(8.3,3.3)(8.5,3)\put(2.5,3.5){$\sf R_1$}\put(5,3.5){$\sf R_2$}\put(7.5,3.5){$\sf R_3$}\put(4.9, - 1){\sf V}\put(3, - 0.4){\sf I}\put(3.8,0){\vector( - 1, 0){1}}\end{picture}

R₁ = R₂ = R₃ = 20 Ω

V = 12 V

I = ?

Equivalent resistance, R = R₁ + R₂ + R₃

                                     R = 20 + 20 + 20

                                     R = 60 Ω

From Ohm's law,

 which states that the voltage across a conductor is directly proportional to the current flowing through it.

       \boxed{\bf V=IR}

Substituting the values,

        12 = I × 60

         I = 12/60

         I = 1/5

         I = 0.2 A

∴ Current = 0.2 A

Similar questions