English, asked by bmdnaseer, 20 days ago

3. Correct the sentences and rewrite them in your notebook. A. i have many crayons B. i like the pink one Grade 1. English​

Answers

Answered by nareshgalaxy11
0

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given that

\rm \: x = a \: sint - b \: cost - - - (1)x=asint−bcost−−−(1)

and

\rm \: y = a \: cost + b \: sint - - - (2)y=acost+bsint−−−(2)

Now, Consider

\rm \: {x}^{2} + {y}^{2}x

2

+y

2

\rm \: = \: (asint - bcost)^{2} + (acost + bsint)^{2}=(asint−bcost)

2

+(acost+bsint)

2

\rm \: = {a}^{2} {sin}^{2}t + {b}^{2} {cos}^{2}t - 2absint \: cost \: + {a}^{2} {cos}^{2}t + {b}^{2} {sin}^{2}t + 2absint \: cost=a

2

sin

2

t+b

2

cos

2

t−2absintcost+a

2

cos

2

t+b

2

sin

2

t+2absintcost

\rm \: = {a}^{2} {sin}^{2}t + {b}^{2} {cos}^{2}t + {a}^{2} {cos}^{2}t + {b}^{2} {sin}^{2}t=a

2

sin

2

t+b

2

cos

2

t+a

2

cos

2

t+b

2

sin

2

t

\rm \: = {a}^{2} ({sin}^{2}t + {cos}^{2}t) + {b}^{2} ({cos}^{2}t + {sin}^{2}t)=a

2

(sin

2

t+cos

2

t)+b

2

(cos

2

t+sin

2

t)

\rm \: = \: {a}^{2} + {b}^{2}=a

2

+b

2

So, we get

\rm \: \: {x}^{2} + {y}^{2} = \: {a}^{2} + {b}^{2}x

2

+y

2

=a

2

+b

2

On differentiating both sides w. r. t. x, we get

\rm \: \: \dfrac{d}{dx}({x}^{2} + {y}^{2}) = \: \dfrac{d}{dx}( {a}^{2} + {b}^{2} )

dx

d

(x

2

+y

2

)=

dx

d

(a

2

+b

2

)

\rm \: 2x + 2y\dfrac{dy}{dx} = 02x+2y

dx

dy

=0

\rm \: x + y\dfrac{dy}{dx} = 0x+y

dx

dy

=0

\rm \: y\dfrac{dy}{dx} = - xy

dx

dy

=−x

\rm \: \dfrac{dy}{dx} = - \dfrac{x}{y}

dx

dy

=−

y

x

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = -\dfrac{d}{dx} \dfrac{x}{y}

dx

2

d

2

y

=−

dx

d

y

x

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = - \: \bigg[\dfrac{y\dfrac{d}{dx}x - x\dfrac{d}{dx}y}{ {y}^{2} } \bigg]

dx

2

d

2

y

=−[

y

2

y

dx

d

x−x

dx

d

y

]

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = - \: \bigg[\dfrac{y - x\dfrac{dy}{dx}}{ {y}^{2} } \bigg]

dx

2

d

2

y

=−[

y

2

y−x

dx

dy

]

can be further rewritten as using equation (1),

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = - \: \bigg[\dfrac{y + x \times \dfrac{x}{y}}{ {y}^{2} } \bigg]

dx

2

d

2

y

=−[

y

2

y+x×

y

x

]

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = - \: \bigg[\dfrac{y + \dfrac{ {x}^{2} }{y}}{ {y}^{2} } \bigg]

dx

2

d

2

y

=−[

y

2

y+

y

x

2

]

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = - \: \bigg[\dfrac{ \dfrac{ {y}^{2} + {x}^{2} }{y}}{ {y}^{2} } \bigg]

dx

2

d

2

y

=−[

y

2

y

y

2

+x

2

]

\begin{gathered}\rm\implies \:\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = - \: \dfrac{ {x}^{2} + {y}^{2} }{ {y}^{3} } \\ \end{gathered}

dx

2

d

2

y

=−

y

3

x

2

+y

2

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULAE USED

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx} {x}^{n} = {nx}^{n - 1} \: }} \\ \end{gathered}

dx

d

x

n

=nx

n−1

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx} \frac{u}{v} = \frac{v\dfrac{d}{dx}u \: - \: u\dfrac{d}{dx}v}{ {v}^{2} } \: }} \\ \end{gathered}

dx

d

v

u

=

v

2

v

dx

d

u−u

dx

d

v

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx}x \: = \: 1 \: }} \\ \end{gathered}

dx

d

x=1

\begin{gathered}\boxed{\tt{ \dfrac{d}{dx}k \: = \: 0\: }} \\ \end{gathered}

dx

d

k=0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}

f(x)

k

sinx

cosx

tanx

cotx

secx

cosecx

x

logx

e

x

dx

d

f(x)

0

cosx

−sinx

sec

2

x

−cosec

2

x

secxtanx

−cosecxcotx

2

x

1

x

1

e

x

to

Answered by guptaajit154
0

Answer:

it's already correct answer

Similar questions