Math, asked by Omprakash3225, 9 months ago

3 cot? A +2 sin? A
27. If sec A = 12, find :
tan? A - cos' A
28. If 5 cos 0 = 3, evaluate :
cosec 0 - cot e
cosec 0 + cot e
find the value of
29. If cosec A + sin A = 5
5:
cosec2 A + sin? A.​

Attachments:

Answers

Answered by VishnuPriya2801
14

Answers:-

27. Given:

sec A = √2

√2 can be written as sec 45°.

→ sec A = sec 45°

On comparing both sides we get,

→ A = 45°

Hence,

→ (3 cot² A + 2 sin² A ) / (tan² A - cos² A)

= (3 cot² 45° + 2 sin² 45°) / (tan² 45° - cos² 45°)

  • cot 45° = 1
  • sin 45° = 1/√2
  • tan 45° = 1
  • Cos 45° = 1/√2

= [ 3 (1)² + 2(1/√2)²] / [ (1)² - (1/√2)² ]

= (3 * 1 + 2 * 1/2 ) / (1 - 1/2)

= [(3 + 1)] / [ (2 - 1) / 2]

= 4 * 2 / 1

= 8

__________________________________

28. ("Theta" is taken as "A")

Given:

5 Cos A = 3

Cos A = 3/5

We know that,

Cos A = Adjacent side/ Hypotenuse

→ Adjacent side / Hypotenuse = 3/5

Using Pythagoras Theorem,

(Hypotenuse)² = (Opposite side)² + (Adjacent side)²

→ (5)² = (Opposite side)² + (3)²

→ (Opposite side)² = 25 - 9

→ (Opposite side)² = 16

→ Opposite side = √16

Opposite side = 4

Hence,

Cot A = Adjacent side/ Opposite side

cot A = 3/4

Cosec A = Hypotenuse/Opposite side

Cosec A = 5/3

Hence,

(Cosec A - cot A) / (Cosec A + cot A) = (3/4 - 5/3) / (3/4 + 5/3)

→ (Cosec A - cot A) / (Cosec A + cot A) = [(9 - 20) / 12 ] / [ (9 + 20) / 12 ]

→ (Cosec A - cot A) / (Cosec A + cot A) = ( - 11 / 12) * (12 / 29)

→ (Cosec A - cot A) / (Cosec A + cot A) = - 11 / 29

___________________________________

29. Given:

Cosec A + sin A = 5

On squaring both sides we get,

→ (Cosec A + sin A)² = (5)²

Using the identity (a + b)² = a² + b² + 2ab in LHS we get,

→ cosec² A + sin² A + 2 * Cosec A * sin A = 25

Using Cosec A = 1/sin A in LHS we get,

→ cosec² A + sin² A + 2 * 1/sin A * sin A = 25

→ cosec² A + sin² A + 2(1) = 25

→ cosec² A + sin² A = 25 - 2

→ cosec² A + sin² A = 23.

Similar questions