Math, asked by ronakbapna, 1 year ago

3 cot theta equals to 4show that 1 minus 10 squared theta divided by 1 + 10 square theta equals to cos square theta minus sin square theta​

Answers

Answered by prakharbaba02
8

Answer:

the anser is 4 by 5

Step-by-step explanation:

the explanation is given in the picture

uploaded above

Attachments:
Answered by lublana
7

Answer with Step-by-step explanation:

3cot\theta=4

cot\theta=\frac{4}{3}

We know that

tan\theta=\frac{1}{cot\theta}

Using the formula

tan\theta=\frac{1}{\frac{4}{3}}=\frac{3}{4}

1+tan^2\theta=sec^2\theta

Substitute the values

1+(\frac{3}{4})^2=sec^2\theta

1+\frac{9}{16}=sec^2\theta

\frac{16+9}{16}=sec^2\theta

sec\theta=\sqrt{\frac{25}{16}}=\frac{5}{4}

cos\theta=\frac{1}{sec\theta}=\frac{1}{\frac{5}{4}}=\frac{4}{5}

sin\theta=\sqrt{1-cos^2\theta}=\sqrt{1-(\frac{4}{5})^2}

sin\theta=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{25-16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}

LHS:

\frac{1-tan^2\theta}{1+tan^2\theta}=\frac{1-(\frac{3}{4})^2}{1+(\frac{3}{4})^2}

\frac{1-tan^2\theta}{1+tan^2\theta}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}

\frac{1-tan^2\theta}{1+tan^2\theta}=\frac{\frac{16-9}{16}}{\frac{16+9}{16}}

\frac{1-tan^2\theta}{1+tan^2\theta}=\frac{7}{25}

RHS:

cos^2\theta-sin^2\theta=(\frac{4}{5})^2-(\frac{3}{5})^2

cos^2\theta-sin^2\theta=\frac{16}{25}-\frac{9}{25}=\frac{16-9}{25}=\frac{7}{25}

LHS=RHS

Hence, proved.

#Learn more:

https://brainly.in/question/752610:Answered by Aroy

Similar questions