3 cot theta is equal to 2 find 4 sin theta minus 3 cos theta divided by 2 sin theta + 6 cos theta
Answers
Answered by
123
Hello !
Given ,
3 cotθ = 2
so,
cotθ = 2/3
we know that ,
cot θ = adjacent side/opposite side
= 2/3
If a , b and c are sides of the right triangle ,
a = 2k
b = 3k
hypotenuse = c = (2k)² + (3k)² = 13k²
= √13k
Now ,
sinθ = opposite side/hypotenuse = 3k/√13k = 3/√13
cosθ = adjacent side/hypotenuse = 2k/√13k = 2/√13
Now lets substitute the given values in the qn :-
{4 sinθ - 3cosθ}/{2sinθ + 6cosθ}
{4*3 ÷ √13 - 3* 2 ÷ √13 }/{ 2 * 3 ÷√13 + 6* 2÷√13}
{12÷√13 - 6 ÷ √13 } / { 6÷√13 + 12÷√13}
{6÷√13}/ {18÷√13}
6 / √13 * √13 / 18
√13 gets cancelled,
6/18 = 1/3
The ans is 1/3
Given ,
3 cotθ = 2
so,
cotθ = 2/3
we know that ,
cot θ = adjacent side/opposite side
= 2/3
If a , b and c are sides of the right triangle ,
a = 2k
b = 3k
hypotenuse = c = (2k)² + (3k)² = 13k²
= √13k
Now ,
sinθ = opposite side/hypotenuse = 3k/√13k = 3/√13
cosθ = adjacent side/hypotenuse = 2k/√13k = 2/√13
Now lets substitute the given values in the qn :-
{4 sinθ - 3cosθ}/{2sinθ + 6cosθ}
{4*3 ÷ √13 - 3* 2 ÷ √13 }/{ 2 * 3 ÷√13 + 6* 2÷√13}
{12÷√13 - 6 ÷ √13 } / { 6÷√13 + 12÷√13}
{6÷√13}/ {18÷√13}
6 / √13 * √13 / 18
√13 gets cancelled,
6/18 = 1/3
The ans is 1/3
Answered by
109
Answer:
Step-by-step explanation:
Given :
To find : The value of ?
Solution :
The expression is
Divide numerator and denominator by
Therefore,
Similar questions