Math, asked by babita699, 7 months ago

3 cotA= 4 investigate that 1- tansquareA/1+ tansquareA​

Answers

Answered by Anonymous
0

See the above attachment...

Attachments:
Answered by TeraBhaii
1

\huge{\underline{\tt{SOLUTION:-}}}

→ 3 cot A = 4

then cot A = 4/3

we know that cot A = 1/tanA

→ tan A = 3/4

putting tanA = 3/4 into

  \longrightarrow \tt{\frac{1 - tan {}^{2}A }{1 + tan {}^{2} A} } \\  \\

 \longrightarrow \:   \tt\frac{1 -   ({ \frac{3}{4}) }^{2} }{1 +(  { \frac{3}{4} )}^{2} }  \\  \\

 \longrightarrow \tt{ \frac{1 -  \frac{9}{16} }{1 +  \frac{9}{16} }} \\  \\

 \longrightarrow \tt{ \frac{ \frac{7}{ \cancel{16}} }{ \frac{ 25}{ \cancel{16} }} } \\  \\

 \longrightarrow \: \boxed{ \bf \frac{7}{25} }

Similar questions