3 cube *(243)-2 by 3 *9-1 by 3
Answers
Answer:
Steps:
1) Draw a line segment AB of length 9.3 units.
2) Extend the line by 1 unit more such that BC=1 unit .
3) Find the midpoint of AC.
4) Draw a line BD perpendicular to AB and let it intersect the semicircle at point D.
5) Draw an arc DE such that BE=BD.
Therefore, BE=
9.3
unitstex] \begin{lgathered}\tt \implies \: (25 - x) {}^{2} = (x) {}^{2} + (5) {}^{2} \\ \tt \implies625 - 50 + x {}^{2} = x {}^{2} + 25 \\ \tt \implies - 50xtex] \begin{lgathered}\tt \implies \: (25 - x) {}^{2} = (x) {}^{2} + (5) {}^{2} \\ \tt \implies625 - 50 + x {}^{2} = x {}^{2} + 25 \\ \tt \implies - 50xtex] \begin{lgathered}\tt \implies \: (25 - x) {}^{2} = (x) {}^{2} + (5) {}^{2} \\ \tt \implies625 - 50 + x {}^{2} = x {}^{2} + 25 \\ \tt \implies - 50xtex] \begin{lgathered}\tt \implies \: (25 - x) {}^{2} = (x) {}^{2} + (5) {}^{2} \\ \tt \implies625 - 50 + x {}^{2} = x {}^{2} + 25 \\ \tt \implies - 50xtex] \begin{lgathered}\tt \implies \: (25 - x) {}^{2} = (x) {}^{2} + (5) {}^{2} \\ \tt \implies625 - 50 + x {}^{2} = x {}^{2} + 25 \\ \tt \implies - 50x