Physics, asked by aman15092003agrawal, 9 months ago

*3. Derive an expression for the electric potential and electric field at point anywhere due to electric dipole?​

Answers

Answered by azaziabdullah207207
0

Answer:

Explanation:

ANSWER

Let an electric dipole consist of two equal and opposite point charges –q at A and +q at B ,separated by a small distance AB =2a ,with centre at O.

The dipole moment, p=q×2a

We will calculate potential at any point P, where

OP=r and  ∠BOP=θ

Let BP=r  

1

​  

 and AP=r  

2

​  

 

Draw AC perpendicular PQ and BD perpendicular PO

In ΔAOC cosθ=OC/OA=OC/a

OC=acosθ

Similarly,  OD=acosθ

Potential at P due to +q=  

4πϵ  

0

​  

 

1

​  

 

r  

2

​  

 

q

​  

 

And  Potential at P due to −q=  

4πϵ  

0

​  

 

1

​  

 

r  

1

​  

 

q

​  

 

Net potential at P due to the dipole

V=  

4πϵ  

0

​  

 

1

​  

(  

r  

2

​  

 

q

​  

−  

r  

1

​  

 

q

​  

)

⟹V=  

4πϵ  

0

​  

 

q

​  

(  

r  

2

​  

 

1

​  

−  

r  

1

​  

 

1

​  

)

Now, r  

1

​  

=AP=CP

=OP+OC

=r+acosθ

And r  

2

​  

=BP=DP

=OP–OD

=r−acosθ

V=  

4πϵ  

0

​  

 

q

​  

(  

r−acosθ

1

​  

−  

r+acosθ

1

​  

)

=  

4πϵ  

0

​  

 

q

​  

(  

r  

2

−a  

2

cos  

2

θ

2acosθ

​  

)

=  

r  

2

−a  

2

cos  

2

θ

pcosθ

​  

(Since p=2aq)

Special cases:-

(i) When the point P lies on the axial line of the dipole, θ=0  

 

cosθ=1

V=  

r  

2

−a  

2

 

p

​  

 

If  a<<r, V=  

r  

2

 

p

​  

 

Thus due to an electric dipole ,potential, V∝  

r  

2

 

1

​  

 

(ii) When the point P lies on the equatorial line of the dipole, θ=90  

 

cosθ=0

i.e electric potential due to an electric dipole is zero at every point on the equatorial line of the dipole.

Similar questions