3. Determine if the points (1,5), (2, 3) and (-2,- 11) are collinear.
Attachments:
Answers
Answered by
1
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > AB
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear then
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear thenAB + BC = CA
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear thenAB + BC = CABut √5 + √212 + √257
- A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear thenAB + BC = CABut √5 + √212 + √257So they are not collinear.
Similar questions