Math, asked by U1t2s3a4v5, 23 days ago

3. Determine if the points (1,5), (2, 3) and (-2,- 11) are collinear. ​

Attachments:

Answers

Answered by Anonymous
1
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > AB
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear then
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear thenAB + BC = CA
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear thenAB + BC = CABut √5 + √212 + √257
  • A(1,5), B(2, 3)andC(-2,-11) Now, AB = √(1²) + (2²) = √5BC = √(4²) + (14²) = √212CA = √(1²) + (16²) = √257As, CA > BC > ABIf points A, BandC are collinear thenAB + BC = CABut √5 + √212 + √257So they are not collinear.

\huge\bold\red{llmsgoodgirll }

Similar questions