Math, asked by gaurangidhuri, 1 year ago

3. Differentiate the following functions w.r.t. x :
(i) elog(log x) . log 3x
Solution :
elog) log 3x = log x. log 3x|
•alogat​

Answers

Answered by pulakmath007
14

SOLUTION

TO DETERMINE

To Differentiate

 \displaystyle \sf{ {e}^{ log( log x) }. log 3x }

EVALUATION

Let

 \displaystyle \sf{y =  {e}^{ log( log x) }. log 3x }

 \displaystyle \sf{ \implies \: y =  log x \: .  \: log 3x }

Differentiating both sides with respect to x we get

 \displaystyle \sf{ \implies \:  \frac{dy}{dx}  =  log x \: .  \frac{d}{dx}  \bigg( log 3x \bigg) + log 3x \: .  \frac{d}{dx}  \bigg( log x \bigg)  }

 \displaystyle \sf{ \implies \:  \frac{dy}{dx}  =  log x \: .  \frac{3}{3x}   + log 3x \: .  \frac{1}{x} }

 \displaystyle \sf{ \implies \:  \frac{dy}{dx}  =  log x \: .  \frac{1}{x}   + log 3x \: .  \frac{1}{x} }

 \displaystyle \sf{ \implies \:  \frac{dy}{dx}  = \frac{1}{x}   \bigg(  log x  + log 3x  \bigg) }

FINAL ANSWER

 \displaystyle \sf{ \frac{dy}{dx}  = \frac{1}{x}   \bigg(  log x  + log 3x  \bigg) }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Attachments:
Similar questions