3 \displaystyle\frac{d}{d x } y +3 \frac{ y }{ x } = 2 { x }^{ 4 } { y }^{ 4 }
Answers
Answered by
0
Answer:
c)1/4
Explanation:
Given,
\displaystyle\longrightarrow\sf{y=\dfrac{x-4}{2\sqrt x}}⟶y=
2
x
x−4
Then by quotient rule,
\displaystyle\longrightarrow\sf {\dfrac {dy}{dx}=\dfrac {2\sqrt x-2(x-4)\cdot\dfrac {1}{2\sqrt x}}{4x}}⟶
dx
dy
=
4x
2
x
−2(x−4)⋅
2
x
1
dx
dy
=
4x
2
x
−
x
x−4
\displaystyle\longrightarrow\sf {\dfrac {dy}{dx}=\dfrac {(x+4)\sqrt x}{4x^2}}⟶
dx
dy
=
4x
2
(x+4)
x
At \displaystyle\sf {x=4,}
dy
=
4(4)
2
(4+4)
4
\displaystyle\longrightarrow\sf {\underline {\underline {\dfrac {dy}{dx}=\dfrac {1}{4}}}}⟶
dx
dy
=
4
1
hope it useful! plz mark as brianliest answer!
Similar questions