Math, asked by motupallinagadurgasa, 2 months ago

3) Evaluate integral 0 to infinity x^4e^-(x^4)dx​

Answers

Answered by mathdude500
14

\large\underline{\sf{Solution-}}

We know that,

By definition of gamma function, we have

\boxed{\displaystyle\int_0^ \infty \tt \: {e}^{ - x} {x}^{n - 1} = \Gamma n}

and

\boxed{ \bf \Gamma \: \dfrac{1}{2} \: = \sqrt{\pi} }

Consider,

\rm :\longmapsto\:Let \: I \: = \displaystyle\int _{0}^\infty \sf \:  {x}^{4} \:  {e}^{ - {x}^{4}}dx

To solve this integral, we use method of Substitution

 \red{\rm :\longmapsto\:Let \:  {x}^{4} = y} \\  \\ \red{\rm :\longmapsto\: {4x}^{3} = \dfrac{dy}{dx}} \\ \\  \red{\rm :\longmapsto\:dx = \dfrac{dy}{4 {x}^{3} }} \\ \\  \red{\rm :\longmapsto\:dx = \dfrac{dy}{4 {y}^{ \frac{3}{4} } }}

So, above integral can be rewritten as

\rm :\longmapsto \: I \: = \displaystyle\int _{0}^\infty \sf \:  y \:  {e}^{ -y} \: \dfrac{1}{4 {y}^{ \frac{3}{4} } } \: dy

\rm :\longmapsto \: I \: =\dfrac{1}{4}  \displaystyle\int _{0}^\infty \sf \:   {y}^{ \frac{1}{4} }  \:  {e}^{ -y} \:\: dy

can be rewritten as

\rm :\longmapsto \: I \: =\dfrac{1}{4}  \displaystyle\int _{0}^\infty \sf \:   {y}^{ \frac{5}{4} - 1 }  \:  {e}^{ -y} \:\: dy

\rm :\longmapsto \: I \: =\dfrac{1}{4}  \Gamma \:\bigg(\dfrac{5}{4}\bigg)

\rm :\longmapsto \: I \: =\dfrac{1}{4}  \Gamma \:\bigg(\dfrac{1}{4} + 1\bigg)

\rm :\longmapsto \: I \: =\dfrac{1}{4} \times \dfrac{1}{4} \:  \:    \Gamma \:\bigg(\dfrac{1}{4}\bigg)

\rm :\longmapsto \: I \: =\dfrac{1}{16}  \Gamma \:\bigg(\dfrac{1}{4}\bigg)

Additional Information :-

\green{\boxed{ \tt \:\Gamma \:(n + 1) = n \: \Gamma \:(n) }}

\green{\boxed{ \tt \: \Gamma \:(n + 1) = n! \:  \: where \: n \in \: natural \: number}}

\green{\boxed{ \tt \: \Gamma \:(1) = 1}}

Similar questions