Math, asked by jayapandey21, 1 year ago

3. Evaluate the following:
4/3 tan2 30° + sín2 60° - 3 cos2 60° +
tan2 60°3/4 - 2 tan2 45°


Anonymous: it's tan^2 or tan2

Answers

Answered by Anonymous
35

Just remember some values

tan30 = 1/√3

tan 60 = tan(90-30)= cot 30 = √3

cos60 = 1/2

tan 45 = 1

So

4/3 tan2 30 + sin2 60 - 3cos2 60 + tan2 60 3/4. - 2 tan2 45

= 4/3 × 1/3 + sin2 60 + cos2 60 - 4 cos2 60 + 9/4 - 2

= 4/9. + 1 - 4/4 + 9/4 -2

= 4/9 +1-1 +9/4 -2

= 16 + 81 - 72)/36

= 25/36


jayapandey21: thanks a lot
Anonymous: ur welcome
Answered by payalchatterje
0

Answer:

Required value of the given expression is  \frac{25}{ 36}

Step-by-step explanation:

Given,

 \frac{4}{3}  {tan}^{2}  {30}^{o}  +  {sin}^{2}  {60}^{o}   - 3 {cos}^{2}  {60}^{o}  +  {tan}^{2}  {60}^{o}  \times  \frac{3}{4}  - 2 {tan}^{2}  {45}^{o}

We know,

 \tan( {30}^{o} )  =  \frac{1}{ \sqrt{3} } \\  \tan( {60}^{o} )   =  \sqrt{3}  \\  \tan( {45}^{o} )  = 1 \\  \sin( {60}^{o} )  =   \frac{ \sqrt{3} }{2}  \\  \cos( {60}^{o} )  =  \frac{1}{2}

Now,

 \frac{4}{3}  {tan}^{2}  {30}^{o}  +  {sin}^{2}  {60}^{o}   - 3 {cos}^{2}  {60}^{o}  +  {tan}^{2}  {60}^{o}  \times  \frac{3}{4}  - 2 {tan}^{2}  {45}^{o}

 =  \frac{4}{3}  \times  {( \frac{1}{ \sqrt{3} } )}^{2}  + ( { \frac{ \sqrt{3} }{2} ) }^{2}  - 3 \times  { (\frac{1}{2} )}^{2}  +  {( \sqrt{3} ) }^{2}  \times  \frac{3}{4}  - 2 \times  {1}^{2}

=  \frac{4}{3}  \times  \frac{1}{3}  +  \frac{3}{4}  -  \frac{3}{4}  + 3 \times  \frac{3}{4}  - 2 \\  =  \frac{4}{9}  +  \frac{9}{4}  - 2 \\  =  \frac{16 + 81 - 72}{36}  \\  =  \frac{25}{36}

This is a problem of Trigonometry.

Some important Trigonometry formulas,

sin(x)  =  \cos(\frac{\pi}{2}  - x)  \\  \tan(x)  =  \cot(\frac{\pi}{2}  - x)  \\  \sec(x)  =  \csc(\frac{\pi}{2}  - x)  \\ \cos(x)  =  \sin(\frac{\pi}{2}  - x)  \\ \cot(x)  =  \tan(\frac{\pi}{2}  - x)  \\ \csc(x)  =  \sec(\frac{\pi}{2}  - x)

know more about Trigonometry,

https://brainly.in/question/8632966

https://brainly.in/question/11371684

#SPJ2

Similar questions