3. Express 0.943943.... in the form of p/q.
Answers
Step-by-step explanation:
\huge \fbox \red{\fbox{Answer}}
Answer
\large \bf{Given:}Given:
\sf \mapsto{Mass \: of \: baby(m)=500g= \frac{500}{1000} kg = 0.5kg}↦Massofbaby(m)=500g=
1000
500
kg=0.5kg
\sf \mapsto{Initial \: velocity(u)=54km/h=54 \times \frac{5}{18} m/s = 15m/s}↦Initialvelocity(u)=54km/h=54×
18
5
m/s=15m/s
\sf \mapsto{Time \: taken(t)=6sec}↦Timetaken(t)=6sec
\large \bf{To \: find:}Tofind:
\sf \leadsto{Force \: acting \: on \: baby. }⇝Forceactingonbaby.
\large \bf{Concept \: used:}Conceptused:
\sf \rightarrow{Final \: velocity(v) \: of \: baby \: is \: 0m/s.}→Finalvelocity(v)ofbabyis0m/s.
\large \bf{Formula \: used:}Formulaused:
\boxed {\bf{Acceleration \: of \: baby(a) = \frac{Final \: velocity - Initial \: velocity}{Time} = \frac{v - u}{t} }}
Accelerationofbaby(a)=
Time
Finalvelocity−Initialvelocity
=
t
v−u
\boxed {\bf{Force=Mass×Acceleration = ma}}
Force=Mass×Acceleration=ma
\large \bf{According \: to \: Question:}AccordingtoQuestion:
\sf \implies{Acceleration \: of \: baby(a) = \frac{Final \: velocity - Initial \: velocity}{Time} = \frac{v - u}{t} }⟹Accelerationofbaby(a)=
Time
Finalvelocity−Initialvelocity
=
t
v−u
\sf \implies{Acceleration \: of \: baby(a) = \frac{0- 15}{6} = \frac{- 15}{6} = - 2.5m/ {s}^{2} }⟹Accelerationofbaby(a)=
6
0−15
=
6
−15
=−2.5m/s
2
\bf{Then,}Then,
\sf \implies{Force=Mass×Acceleration}⟹Force=Mass×Acceleration
\sf \implies{Force=0.5×2.5=1.25N}⟹Force=0.5×2.5=1.25N
\bf{Hence, Force \: acting \: on \: baby \: is \: 1.25 \: newton.}Hence,Forceactingonbabyis1.25newton.
__________________________________________________________